Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	B _{i-} grid [mm]	t [mm]	KR [mm]	$\begin{array}{c} \textbf{Addi-}\\ \textbf{tional}\\ \textbf{load}\\ \leq [kg/m] \end{array}$	d _{max} [mm]	
H33	odo Obe						X mm	\rightleftharpoons	×			
	i	RSH	33	51	50 – 400	B _i + 22	1	56	60 – 300	11	26	
H46	<u></u>	RSH	46	64	50 – 400	B _i + 26	1	67	75 – 350	20	36	
L60	Ļ	RSH RE	60 60	88 88	75 – 600 85 – 250	B _i + 28			135 – 500 135 – 500		48 48	
L80		RSH RE	80 80	110 110	100 – 800 85 – 250				150 – 500 150 – 500		64 64	

MASTER series | Overview

Unsuppo	rted arraı	ngement	Glidin	g arrange	ement		Inner dis	tribution	l		ation va		Page
Travel length ≤ [m]	v _{max} ≤ [m/s]	a max ≤ [m/s²]	$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a max ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	Pa
			←	(2						vertica	Ξ̈́	arra	
3.5	10	50	60	2	2-3	•	•	-	•	•	•	_	244
6.4	8	40	80	2	2-3	•	•	-	•	•	•	-	250
7	6	30	_	-	-	•	•	-	•	•	•	_	256
7	6	30	-	-	-	•	•	-	•	•	•	-	260
7.9	5	25	-	-	-	•	•	-	•	•	•	-	266
7.9	5	25	-	-	-	•	•	-	•	•	•	-	270

Pitch 56 mm

Inner height 33 mm

Inner widths 50 - 400 mm

Bending radii 60 - 300 mm

Stay variants

Aluminum stay RSH page 244

Frame screw-in stay

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

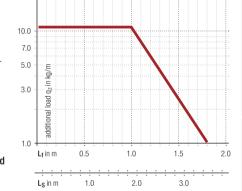
Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

20.0

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
60	171	211	301	142
75	201	241	348	157
100	251	291	427	182
125	301	341	505	207
150	351	391	584	232
175	401	441	662	257
200	451	491	741	282
220	491	531	804	302
250	551	591	898	332
300	651	691	1055	382

Inner heights

Inner widths

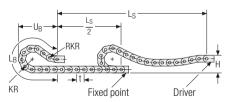


tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.08$ kg/m. For other inner widths, the maximum additional load changes.


Velocity up to 10 m/s

Gliding arrangement

We recommend the use of glide shoes for gliding appli-

The gliding cable carrier must be guided in a channel. See p. 654.

Velocity up to 2 m/s

Acceleration up to 2 - 3 m/s2

Travel length up to 60 m

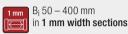
Additional load up to 11 kg/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Key for abbreviations

on page 12

HC33 RSH □ Dimensions · Technical data


Plastic stay RSH screw-in frame stay

- Aluminum profile bars for light and medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by rotating.

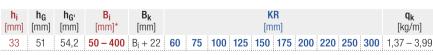
Stays mounted on each chain link (VS: fully-stayed)

Design guidelines from page 38

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

> Calculating the cable carrier length

Cable carrier length Lk


$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

 q_k

[kg/m]

Technical support:

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

online-engineer.de

The divider system is mounted on every 2^{nd} chain link as a standard.

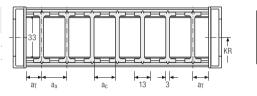
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RSH stay, available as an accessory (Version B).

Inner heights

Inner widths

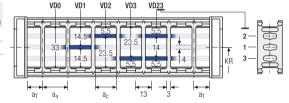
Increments



:subaki-kabelschlepp.com/

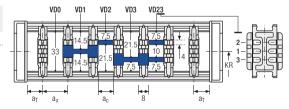
Divider system TS0 without height separation

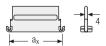
Vers.			a _{c min} [mm]	a _{x grid} [mm]	n _T
Α	7	13	10	-	-
В	7	13	10	2	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	
Α	7	13	10	-	2
В	7	13	10	2	2


The dividers can be moved within the cross section (version A) or fixed (version B).

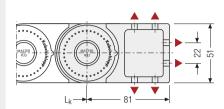


Divider system TS3 with height separation consisting of plastic partitions

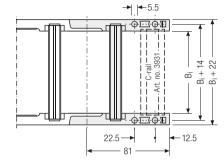
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16	8	2

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.

Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.


	a_x (center distance of dividers) [mm]											
	a _c (nominal width of inner chamber) [mm]											
10	3	18	23	28	32	33	38	43	48	58	64	68
{	3	10	15	20	24	25	30	35	40	50	56	60
78	3	80	88	96	112	128	144	160	176	192	208	
70)	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_X > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 3$ mm). Twin dividers are also suitable for retrofitting in the partition system.


Key for abbreviations

on page 12

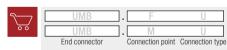
The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.

MU

▲ Assembly options

Design guidelines from page 38

> (o (o (o (o (o - Driver Fixed point FU


Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your cable carrier here: onlineengineer.de

online-engineer.de

technik@kabelschlepp.de

Technical support:

Incre-ments

tsubaki-kabelschlepp.com/ master

Design guidelines

from page 38

H46

Pitch 67 mm

Inner height 46 mm

Inner widths 50 - 400 mm

Bending radii 75 – 350 mm

Stay variants

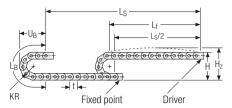
Aluminum stay RSH page 250

Frame screw-in stay

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

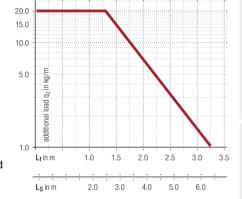
H46 | Installation dim. | Unsupported

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
75	214	262	370	174
100	264	312	448	199
125	314	362	527	224
150	364	412	605	249
175	414	462	684	274
200	464	512	762	299
220	504	552	825	319
250	564	612	919	349
300	664	712	1076	399
350	764	812	1234	449

Inner heights

Inner widths


50 400

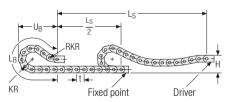
tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.4$ kg/m. For other inner widths, the maximum additional load changes.

Velocity up to 8 m/s



Gliding arrangement

We recommend the use of glide shoes for gliding appli-

The gliding cable carrier must be guided in a channel. See p. 654.

Velocity up to 2 m/s

Acceleration up to $2 - 3 \text{ m/s}^2$

Travel length up to 80 m

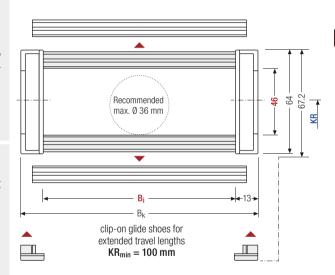
Additional load up to 20 kg/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

HC46 RSH | Dimensions · Technical data

Plastic stay RSH screw-in frame stay

- Aluminum profile bars for light and medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

 $B_i 50 - 400 \text{ mm}$ in 1 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
46	64	67,2	50 – 400	B _i + 26	75 100 125 150 175 200 220 250 300 350	

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

HC46 RSH | Inner distribution | TS0 · TS1 · TS3

Divider systems

The divider system is mounted on every 2nd chain link as a standard.

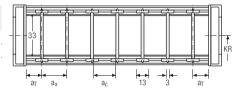
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RSH stay, available as an accessory (Version B).

Inner heights

Inner widths

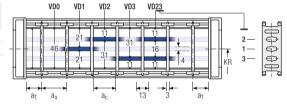
Increments



subaki-kabelschlepp.com/

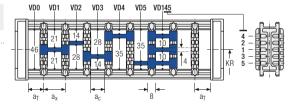
Divider system TS0 without height separation

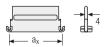
١	/ers.				a _{x grid} [mm]	n _T min
	Α	7	13	10	_	-
	В	7	13	10	2	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	
Α	7	13	10	-	2
В	7	13	10	2	2


The dividers can be moved within the cross section (version A) or fixed (version B).



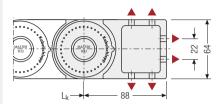
Divider system TS3 with height separation consisting of plastic partitions

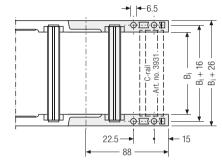
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16	8	2

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.

Aluminum partitions with 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

$a_c \ (\text{nominal width of inner chamber}) \ [\text{mm}] \\ 16 \ 18 \ 23 \ 28 \ 32 \ 33 \ 38 \ 43 \ 48 \ 58 \ 64$	68
	68
8 10 15 20 24 25 30 35 40 50 56	60
78 80 88 96 112 128 144 160 176 192 208	
70 72 80 88 104 120 136 152 168 184 200	


When using plastic partitions with $a_x > 112 \text{ mm}$, we recommend an additional center support with a **twin divider** ($S_T = 3$ mm). Twin dividers are also suitable for retrofitting in the partition system.


Key for abbreviations

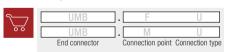
Design guidelines from page 38

on page 12

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.

▲ Assembly options

MU (o (o (o (o - - Driver Fixed point FU


Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your cable carrier here: onlineengineer.de

online-engineer.de

technik@kabelschlepp.de

Technical support:

Inner widths

Incre-ments

tsubaki-kabelschlepp.com/ master

Pitch 91 mm

Inner height 60 mm

Inner widths 75 – 600 mm

Bending radii 135 – 500 mm

Stay variants

Aluminum stay RSH page 256

Frame screw-in stay

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

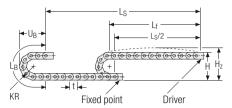
Plastic stay RE page 260

Frame screw-in stay

- Plastic profile bars for light and medium loads.
- Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

L60 | Installation dim. | Unsupported

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
135	358	408	607	271
150	388	438	654	286
175	441	491	732	312
200	488	538	811	336
250	588	638	968	386
300	688	738	1125	436
350	788	838	1282	486
400	888	938	1439	536
500	1088	1138	1753	636

Inner heights

Inner widths

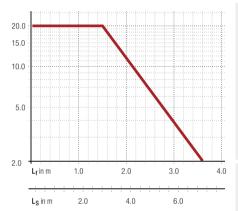
tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 3.6$ kg/m. For other inner widths, the maximum additional load changes.

Velocity


up to 6 m/s

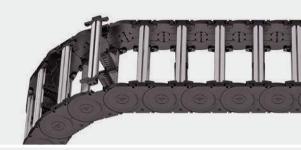
up to 7 m

Travel length

Additional load up to 20 kg/m

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

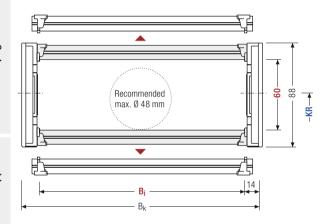


Configure your cable carrier here: online-engineer.de

LC60 RSH | Dimensions · Technical data

Plastic stay RSH – screw-in frame stay

- Aluminum profile bars for light and medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

B_i 75 – 600 mm in **1 mm width sections**

 $\left[\ \mathring{\mathcal{U}} \right]$

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

h _i [mm]	h _G [mm]	B _i [mm]*	B _k [mm]					KR [mm]					q_k [kg/m]
60	88	75 – 600	B _i + 28	135	150	175	200	250	300	350	400	500	2,78 - 7,10

^{*} in 1 mm width sections

Order example

LC 60 Type	. 400 . B _i [mm]	RSH .	250 KR [mm]	2184 L _k [mm]	VS Stay arrangement

LC60 RSH | Inner distribution | TS0 · TS1

Divider systems

The divider system is mounted on every 2nd chain link as a standard.

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

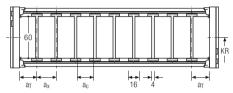
For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RSH stay, available as an accessory (**Version B**).

Inner heights

Inner widths

75 600 **◆**

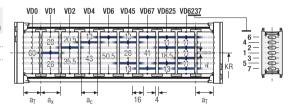
Increments



:subaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.			a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	8	13	9	_	-
В	10	13	9	2	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T min
Α	8	13	9	-	2
В	10	13	9	2	2

The dividers can be moved within the cross section (version A) or fixed (version B).

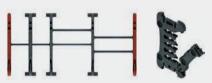
TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source — with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

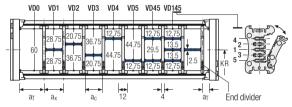
Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at **traxline.de**

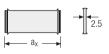
LC60 RSH | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider **version A** is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

Divider version A

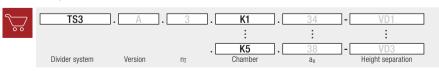

End divider



Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T
Α	19.5 / 4,5*	14	10	2

* For End divider

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



	a_x (center distance of dividers) [mm]													
$a_{\!\scriptscriptstyle C}$ (nominal width of inner chamber) [mm]														
14 16 19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10 12 15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58 59 64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54 55 60	64	65	70	74	75	76	80	84	85	90	92	95	108	

An additional central support is required when using plastic partitions with $a_{\rm X}$ > 49 mm.

Order example

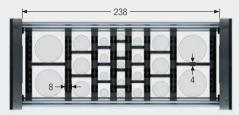
Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_X]$ (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

Inner heights

Inner widths 75 600

Increments

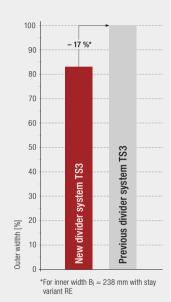

1 mm

tsubaki-kabelschlepp.com/

The next generation of the TS3 divider system

Width optimized and ready for Industry 4.0

Width comparison



Previous divider system TS3 with stay variant RE

Significatn space saving with same filling capacity through the new divider system TS3 with stay variant RE

Width optimization through adapted dividers

Easy-to-assemble cable separation on the smallest footprint

Insert cables, open dividers and insert first height separator

Insert additional cables, insert height separators

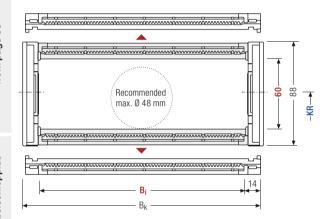
Insert cables, complete height separators

Close dividers

LE60 RE | Dimensions · Technical data

Plastic stay RE – frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

B_i 85 – 250 mm

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	KR [mm]	q k [kg/m]	
60	85 125 13 8	85 125 138 150	150	135 150 175 200 250	270 710	
UU	00	180 196 225 250	D _I + 20	300 350 400 500	2,10 - 1,10	

Order example

LE 60 Type	. 180 B _i [mm]	RE Stay variant	250 - [KR [mm]	2184 L _k [mm]	VS Stay arrangement

Divider systems

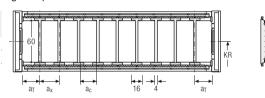
The divider system is mounted on every 2nd chain link as a standard.

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral acceleration and lying on the side, divider with arresting cams are available. These can be fixed in the latching profile of the stays (Version B).

Inner heights

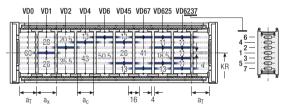
Inner widths



subaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.				a _{x grid} [mm]	n _T min
Α	8	13	9	-	-
В	10	13	9	2.5	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T min
Α	8	13	9	-	2
В	10	13	9	2.5	2

The dividers can be moved within the cross section (version A) or fixed (version B).

TOTALTRAX® complete systems

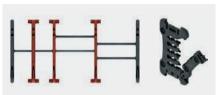
Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source — with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at **traxline.de**


Key for abbreviations on page 12

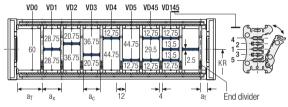
LE60 RE | Inner distribution | TS3

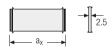

Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider **version A** is used for vertical. partitioning within the cable carrier. The complete divider system can be moved within the cross section.

Divider version A

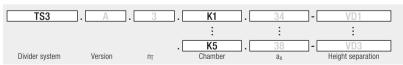
End divider


Design guidelines from page 38


technik@kabelschlepp.de Technical support:

* For End divider

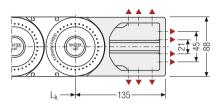
The dividers are fixed by the partitions. the complete divider system is movable in the cross section.

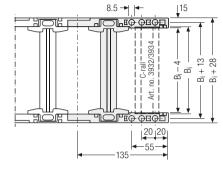


		ć	a _x (ce	enter	dista	nce o	t divi	ders)	[mm]					
$a_{\scriptscriptstyle C}$ (nominal width of inner chamber) [mm]														
14 16 19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10 12 15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58 59 64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54 55 60	64	65	70	74	75	76	80	84	85	90	92	95	108	

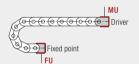
An additional central support is required when using plastic partitions with $a_x > 49 \text{ mm}$.

Order example




Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.


Universal end connectors UMB - plastic (standard)

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.

▲ Assembly options

Connection point

F – fixed point M – driver

Connection type

U - universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your cable carrier here: onlineengineer.de

tsubaki-kabelschlepp.com/

Inner height 80 mm

Inner widths 100 - 800 mm

Bending radii 150 - 500 mm

Stay variants

Aluminum stay RSH page 266

Frame screw-in stay

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

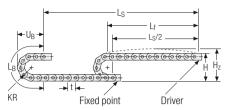
Plastic stay RE page 270

Frame screw-in stay

- Plastic profile bars for light and medium loads.
- Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

L80 | Installation dim. | Unsupported

Unsupported arrangement

KR	Н	H_z	L_{B}	U_{B}
[mm]	[mm]	[mm]	[mm]	[mm]
150	410	470	694	316
200	510	570	851	366
250	610	670	1008	416
300	710	770	1165	466
350	810	870	1322	516
400	910	970	1479	566
500	1110	1170	1793	666

Inner heights

Inner widths

tsubaki-kabelschlepp.com/

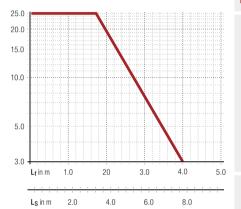
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 5.63$ kg/m. For other inner widths, the maximum additional load changes.

Velocity up to 5 m/s

Travel length


up to 7.9 m

Acceleration up to 25 m/s2

Additional load up to 25 kg/m

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

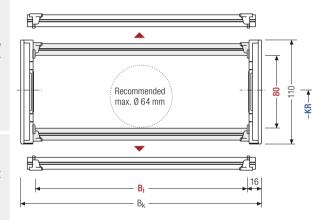
Configure your cable carrier here: online-engineer.de

Key for abbreviations on page 12

LC80 RSH | Dimensions · Technical data

Plastic stay RSH screw-in frame stay

- Aluminum profile bars for light and medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

B_i 100 - 800 mm in 1 mm width sections

Design guidelines from page 38

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

technik@kabelschlepp.de Technical support:

Opropried Callac		Jable Callel Colliguator
	8	

h _i	h _G	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
80	110	100 – 800	B _i + 32	150 200 250 300 350 400 500	3,89 – 10,01

^{*} in 1 mm width sections

Order example

LC 80 Type	. 500 B _i [mm]	RSH Stay variant	300 - KR [mm]	2442 L _k [mm]	VS Stay arrangement

LC80 RSH | Inner distribution | TS0 · TS1

Divider systems

The divider system is mounted on every 2nd chain link as a standard.

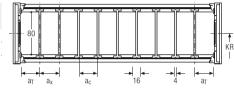
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RSH stay, available as an accessory (Version B).

Inner heights

Inner

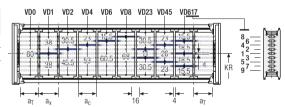
Increments


:subaki-kabelschlepp.com/

widths

Divider system TS0 without height separation

Vers.				a _{x grid} [mm]	n _T min
Α	10	16	12	-	-
В	11	16	12	3	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T min
Α	10	16	12	-	2
В	11	16	12	3	2

The dividers can be moved within the cross section (version A) or fixed (version B).

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

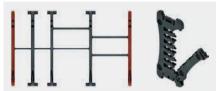
LC80 RSH | Inner distribution | TS3

Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider version A is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

Key for abbreviations on page 12

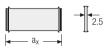
Design guidelines from page 38


technik@kabelschlepp.de Technical support:

online-engineer.de

Divider version A

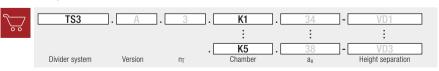
End divider



Vers	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T
Α	19.5 / 4,5*	14	10	2

* For End divider

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.


VD0 V	D1 VD2 VD4	VD6 VD45	VD47 VD6 <u>25</u>	<u>-</u>	7 _
80		14.75 22.75 62.75 29.5 22.75	22.75 14.75 13.5 37.5 21.5 14.75 22.75	2.5 T KR	4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
∢ ≯ ∢ a _T ;	a _x a _c	→ - 12	→ -	→ ← a⊤ En	nd divider

					a _x (ce	enter	dista	nce o	t divi	ders)	[mm					
	a_{c} (nominal width of inner chamber) [mm]															
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

An additional central support is required when using plastic partitions with $a_x > 49 \text{ mm}$.

Order example

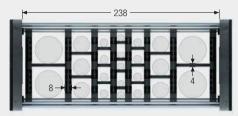
Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

Inner heights

Inner widths 100 800

Increments

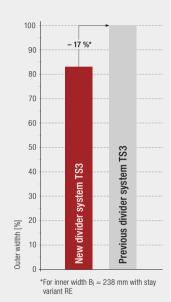

1 mm

tsubaki-kabelschlepp.com/

The next generation of the TS3 divider system

Width optimized and ready for Industry 4.0

Width comparison



Previous divider system TS3 with stay variant RE

Significatn space saving with same filling capacity through the new divider system TS3 with stay variant RE

Width optimization through adapted dividers

Easy-to-assemble cable separation on the smallest footprint

Insert cables, open dividers and insert first height separator

Insert additional cables, insert height separators

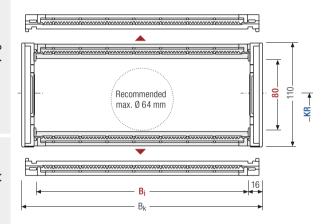
Insert cables, complete height separators

Close dividers

LE80 RE | Dimensions · Technical data

Plastic stay RE – frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by rotating.



Stays mounted on each chain link (VS: fully-stayed)

B_i 85 – 250 mm

η̈́.

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

h _i [mm]	h _G [mm]		! [m	3 _i nm]		B _k [mm]		KR [mm]	q_k [kg/m]	
80	110	85	125	138	150	Bi + 32	150	200	300	3,89 – 10,01
00	110	180	196	225	250	Dj + 32	350	400	500	3,09 - 10,01

Order example

LE 80 Type	. 250 B _i [mm]	RE Stay variant	300 - [KR [mm]	2442 L _k [mm]	VS Stay arrangement

Divider systems

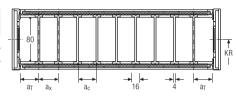
The divider system is mounted on every 2nd chain link as a standard.

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral acceleration and lying on the side, divider with arresting cams are available. These can be fixed in the latching profile of the stays (Version B).

Inner heights

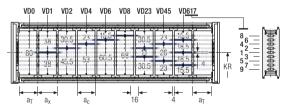
Inner widths



subaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.				a _{x grid} [mm]	n _T min
Α	8	16	12	-	-
В	10	16	12	2.5	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T
Α	8	16	12	-	2
В	10	16	12	2.5	2

The dividers can be moved within the cross section (version A) or fixed (version B).

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

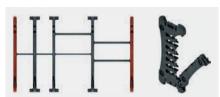
LE80 RE | Inner distribution | TS3

Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider **version A** is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

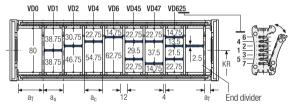
Key for abbreviations on page 12

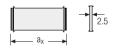
Design guidelines


from page 38

technik@kabelschlepp.de Technical support:

Divider version A

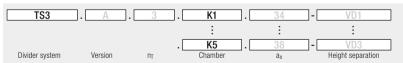

End divider



Vers.	a _{T min}	a _{x min}	a _{c min}	n _T
	[mm]	[mm]	[mm]	min
Α	19.5 / 4,5*	14	10	2

* For End divider

The dividers are fixed by the partitions. the complete divider system is movable in the cross section.

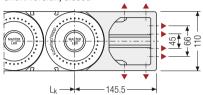


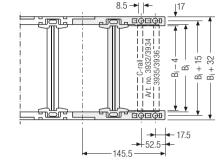
	a _x (center distance of dividers) [mm]															
	a _c (nominal width of inner chamber) [mm]															
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

An additional central support is required when using plastic partitions with $a_x > 49 \text{ mm}$.

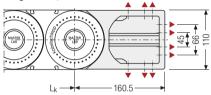
Order example

Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

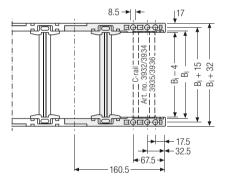

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

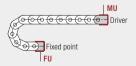

L80 | End connectors | Plastic

Universal end connectors UMB - plastic (standard)

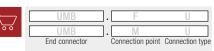

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.

Short version, closed




Long version, closed

▲ Assembly options


Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

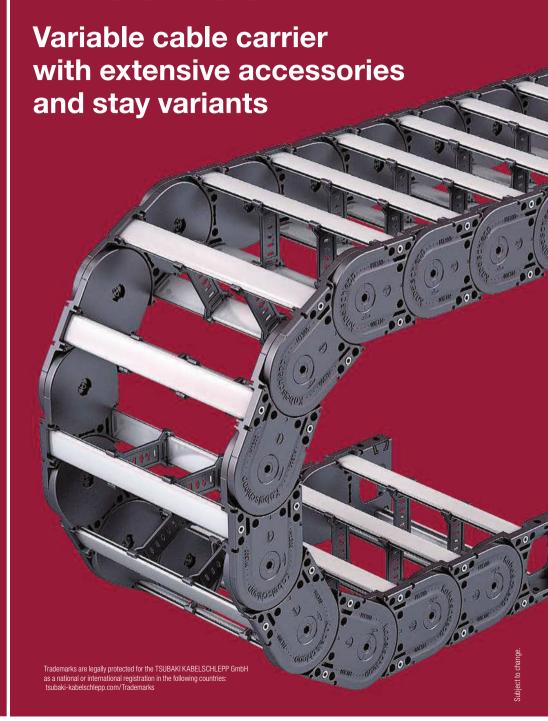
We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

Inner

heights

80

Inner


widths 100

800

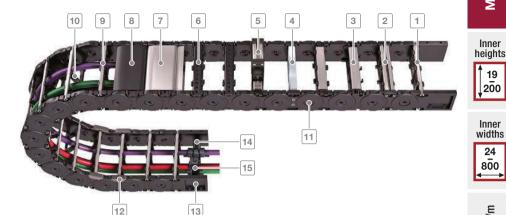
tsubaki-kabelschlepp.com/

Subject to change.

M series

Inner

19 200


Inner widths

> 24 800

> > tsubaki-kabelschlepp.com/m

series

M series | Overview

- Aluminum stavs available in 1 mm width sections
- 2 4-fold bolted aluminum stays for extreme loads
- 3 Aluminum stays with ball joint
- 4 Aluminum hole stays

5 | Mounting frame stays

13

- 6 Plastic stays available in 4,8 or 16 mm width sections
- 7 Aluminum cover available in 1 mm width sections
- 8 Plastic cover available in 8 or 16 mm width sections
- 9 Can be opened quickly on the inside and the outside for cable laying
- 10 Fixable dividers
- 11 Locking bolts
- 12 Replaceable glide shoes
- 13 Universal end connectors (UMB)
- 14 C-rail for strain relief elements
- 15 Strain relief combs

Features

- Encapsulated, dirt-resistant stroke system
- Durable sidebands through robust link plate design
- Easy assembly of side bands through bars with easy-to-assemble locking bolts
- Long service life due to minimized hinge wear owing to the "life extending 2 disc principle"
- Large selection of vertical and horizontal stay systems and dividing options for your cables
- Versions with aluminum stays in 1 mm width sections up to 800 mm inner width
- Versions with plastic stays available in 4, 8 or 16 mm width sections

Minimized hinge wear owing to the "life extending 2 disc principle"

Sturdy link plate design, encapsulated stroke system

Easy to assemble through locking bolts

Replaceable glide shoes for long service life for gliding applications

Key for abbreviations on page 12

Design guidelines from page 38

Technical support: technik@kabelschlepp.de

M series | Overview

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	$\begin{matrix} B_k \\ [mm] \end{matrix}$	B _i - grid [mm] x mm ←	t [mm]	KR [mm]	Additional load ≤ [kg/m]	d _{max} [mm]
M0320											
2 2 2		RS 01	19	27.5	25 – 275	36 – 286	1	32	37 – 200	2.5	15
1111	亩	RS 02	19	27.5	25 – 275	36 – 286	1	32	37 – 200	2.5	15
	 	RE	19	27.5	25 – 149	36 – 160	4	32	37 – 200	2.5	15
M0475											
REE		RD 1	28	39	24 – 280	41 – 297	8	47.5	55-300	3.0	22
		RD 2	28	39	24 – 280	41 – 297	8	47.5	55-300	3.0	22
- 4 - 4 -											
M0650			:								
		RS	38	57	75 – 400	109 – 434	1	65	75 – 350	35	30
		LG	_	57	75 – 500	109 – 534	1	65	75 – 350	35	29
	ظلِك	RMA	38 (200)	57 (224)	200 – 400	234 – 434	1	65	75 – 350	35	-
	Image: section of the content of the	RE	42	57	50 – 266	84 – 300	8	65	75 – 350	35	33
		RD	42	57	50 – 266	84 – 300	8	65	75 – 350	35	33
M0950											
¥ 2 2 %	口	RS	58	80	75 – 400	114 – 439	1	95	140 – 380	36	46
		RV	58	80	75 – 500	114 – 539	1	95	140 – 380	36	46
	ф	RM	54	80	75 – 600	114 – 639	1	95	140 – 380	36	43
		LG	_	80	75 – 600	114 – 639	1	95	140 – 380	36	38
	ظلِّكُ	RMA	58 (200)	80 (224)	200 – 500	239 – 539	1	95	140 – 380	36	-
		RMR	51	80	75 – 600	114 – 639	1	95	140 – 380	36	46
		RE	58	80	45 – 557	84 – 596	16	95	140 – 380	36	46
		RD	58	80	45 – 557	84 – 596	16	95	140 – 380	36	46

^{*} Additional information can be found in our technical manual.

online-engineer.de

M series | Overview

Unsuppo	rted arrar	ngement		g arrange	ment		Inner dis	tribution			ation va		Page
Travel length ≤ [m]	v _{max} ≤ [m/s]	a max ≤ [m/s²]	Travel length ≤ [m]	v _{max} ≤ [m/s]	a_{max} ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	<u>a</u>
								H		vertica or	ΪÁ	arra	
	:	: :								:			
2.8	10	50	80	2.5	25	•	•	-	-	•	•	•	282
2.8	10	50	80	2.5	25	•	•	-	-	•	•	•	282
2.8	10	50	80	2.5	25	•	•	-	-	•	•	•	284
2.7	10	50	_		_	•	•	•	_	•	•	•	290
2.7	10	50	_	_	_	•	•	•	_	•	•	•	292
2.1	10	30											
4.8	8	40	60	2	2-3	•	•	•	•	•	•	•	298
4.8	8	40	60	2	2 – 3	-	-	-	-	•	•	•	*
4.8	8	40	60	2	2-3	•	-	-	-	•	•	-	*
4.8	8	40	60	2	2 – 3	•	•	•	•	•	•	•	302
4.8	8	40	60	2	2-3	•	•	•	•	•	•	•	*
8.8	6	30	80	2	2-3								308
0.0		30	00			•	•	•	_		·		300
8.8	6	30	80	2	2-3	•	•	•	•	•	-	•	310
8.8	6	30	80	2	2-3	•	•	•	-	•	•	•	314
8.8	6	30	80	2	2-3	-	-	-	-	•	•	•	*
8.8	6	30	80	2	2-3	•	-	-	-	•	•	-	*
8.8	6	30	80	2	2-3	•	-	-	-	•	•	•	*
8.8	6	30	80	2	2-3	•	•	•	•	•	•	•	316
8.8	6	30	80	2	2-3	•	•	•	•	•	•	•	*

M series | Overview

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	B _{i-} grid [mm]	t [mm]	KR [mm]	Addi- tional load ≤ [kg/m]	d _{max} [mm]	
	0pe				\bigcirc	\longleftrightarrow	X mm		*			
M1250												
	Image: section of the content of the	RS	72	96	75 – 400	120 – 445	1	125	180 – 500	65	61	
	İ	RV	72	96	100 – 600	145 – 645	1	125	180 – 500	65	61	
·X·X	Щ	RM	69	96	100 – 800	145 – 845	1	125	180 – 500	65	59	
	iộa	LG	_	96	100 – 800	145 – 845	1	125	180 – 500	65	59	
	ďÜb	RMA	72 (200)	96 (226)	200 – 800	245 – 845	1	125	180 – 500	65	-	
	Щ	RMR	66	96	100 – 800	145 – 845	1	125	180 – 500	65	54	
		RE	72	96	71 – 551	116 – 596	16	125	180 – 500	65	61	
	Ä	RD	72	96	71 – 551	116 – 596	16	125	180 – 500	65	61	
M1300												
-1-1-		RMF	87	120	100 – 800	150 – 850	1	130	150 – 500	70	75	
		RMS	87	120	100 – 800	150 – 850	1	130	150 – 500	70	75	
		RM	87	120	100 – 800	150 – 850	1	130	150 – 500	70	75	
		LG	-	120	100 – 800	150 – 850	1	130	150 – 500	70	74	

^{*} Additional information can be found in our technical manual.

Technical manual

Do you need more information on the M series? Our technical manual with all information on configuring your cable carrier can be found at **tsubaki-kabelschlepp.com/download**.

M series

M series | Overview

Unsuppor	rted arraı	ngement	Gliding	g arrange	ment		Inner dis	tribution			ation va	riants	Page
$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a max ≤ [m/s²]	$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v max ≤ [m/s]	a_{max} ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	ng on the side	rotating arrangement	Pa
										vertica or	Ξ	arra	
				:	:	:	:	:					
9.7	5	25	100	2	2 – 3	•	•	-	-	•	•	•	322
9.7	5	25	100	2	2-3	•	•	•	•	•	-	•	324
9.7	5	25	100	2	2-3	•	•	•	-	•	•	•	328
9.7	5	25	100	2	2-3	-	-	-	-	•	•	•	*
9.7	5	25	100	2	2 – 3	•	-	-	-	•	•	-	*
9.7	5	25	100	2	2-3	•	-	-	-	•	•	•	*
9.7	5	25	100	2	2 – 3	•	•	•	•	•	•	•	330
9.7	5	25	100	2	2-3	•	•	•	•	•	•	•	*
10.8	5	25	120	2	2-3	•	•	-	•				336
10.8	5	25	120	2	2-3	•	•	-	•	•	•	•	338
10.8	5	25	120	2	2-3	•	•	-	•	•	•	•	*
10.8	5	25	120	2	2 – 3	-	-	-	-	•	•	•	*

M0320

Pitch 32 mm

Inner height 19 mm

Inner widths 25 – 275 mm

Bending radii 37 - 200 mm

Stay variants

Aluminum stay 01page 282

Frame stay detachable inside

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Inside: release by turning by 90°.

Aluminum stay 02 page 282

Frame stay detachable outside "the standard"

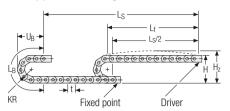
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside: release by turning by 90°.

Plastic stay RE page 284

Frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Inside/outside: release by turning by 90°.

More product information online



Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: online-engineer.de

Unsupported arrangement

KR	Н	H_z	L_B	U_B
[mm]	[mm]	[mm]	[mm]	[mm]
37	101.5	121.5	181	83
47	121.5	141.5	212	93
77	181.5	201.5	306	123
100	227.5	247.5	379	146
200	427.5	427.5	693	246

Inner heights

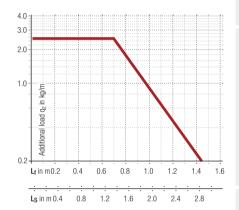
Inner widths

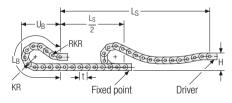
tsubaki-kabelschlepp.com/m

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 0.54$ kg/m. For other inner widths, the maximum additional load changes.


Velocity up to 10 m/s


Acceleration up to 50 m/s2

Gliding arrangement

The gliding cable carrier has to be routed in a channel. See p. 654.

Velocity up to 2.5 m/s

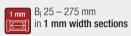
Acceleration up to 25 m/s2

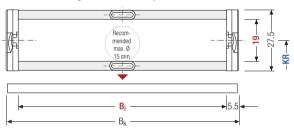
Travel length up to 80 m

Additional load up to 2.5 kg/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Aluminum stay 01/02 – frame stay detachable outside


- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by turning by 90°.

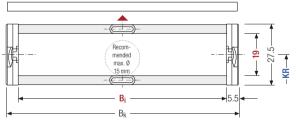


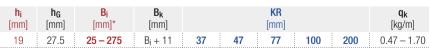
Stay arrangement on each chain link (VS: fully-stayed)

Aluminum stay 01 frame stay detachable inside

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.


Calculating the cable carrier length


Cable carrier length L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

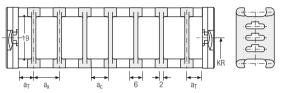
Aluminum stay 02 frame stay detachable outside

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

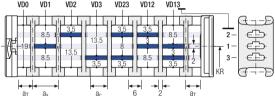
MC0320 01/02 | Inner distribution | TS0 · TS1


Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS). As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	3	6	4	-


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation

The dividers can be moved in the cross section.

Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T].

If using divider systems with height separation (TS1) please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

Inner widths

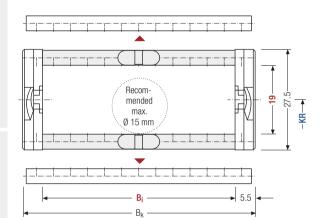
Increments

:subaki-kabelschlepp.com/m

ME0320 RE | Dimensions · Technical data

Plastic stay RE – screw-in frame stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Available customized in 4 mm grid.
- Outside/inside: release by turning by 90°.



Stay arrangement on each chain link (VS: fully-stayed)

B_i 25 – 149 mm in **4 mm width sections**

ñ

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

h _i	h _G	B _i	B_k		KR				q k	
[mm]	[mm]	[mm]*	[mm]		[mm]				[kg/m]	
19	27.5	25 – 149	B _i + 11	37	47		77	100	200	0.46 - 0.85

^{*} in 4 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

ME0320 RE | Inner distribution | TS0 · TS1

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2^{nd} chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

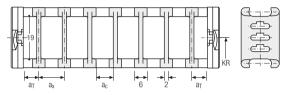
The dividers are easily attached to the stay for applications with lateral acceleration and for applications laying on their side by simply turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbars (Version B).

The groove in the frame stay faces outwards.

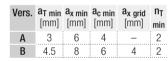
Inner heights

Inner widths

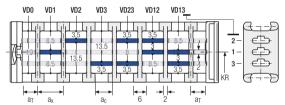
Increments



:subaki-kabelschlepp.com/m


Divider system TS0 without height separation

Vers.				a _{x grid} [mm]	n _T min
Α	3	6	4	-	-
В	4.5	8	6	4	-
			• • • • • • • • • • • • • • • • • • • •		


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation

The dividers can be moved in the cross section.

Order example

Please state the designation of the divider system (TS0, TS1 \dots), version and number of dividers per cross section $\lceil n_T \rceil$.

If using divider systems with height separation (TS1), please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

on page 12

Bi

[mm]

25

29 2

37 3

2

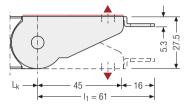
Bi

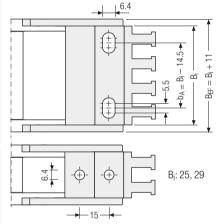
[mm]

39 4

49 4

69 5


 n_z


M0320 | End connectors

One part end connectors -

plastic/aluminum (with integrated strain relief)

The plastic/aluminum end connectors can be connected from above or below. The connection variants on the fixed point and on the driver can be combined and, if required, changed afterwards.

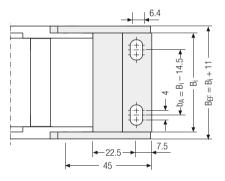
Bi

[mm]

89

124 10


 n_z


7

8 109

One-part end connectors plastic/aluminum

The plastic/aluminum end connectors can be connected from above or below. The connection variants on the fixed point and on the driver can be combined and, if required, changed afterwards.

Assembly options

Connection point

Bi

[mm]

149 11

 n_z

F – fixed point

M - driver

Connection type

A – threaded joint outside (standard)

- threaded joint inside


H - threaded joint, rotated 90° to the outside

K – threaded joint, rotated 90° to the inside

Order example

Fixed point

Inner widths

tsubaki-kabelschlepp.com/m

M0475

Pitch 47.5 mm

Inner height 28 mm

Inner widths 24 - 280 mm

Bending radii 55 - 300 mm

Stay variants

Plastic stay 01.....page 290

Frame stay with hinge in the inner radius

- Plastic profile bars with hinge for light and medium loads. Assembly without screws.
- Outside: release by turning by 90°.
- Inside: swivable to both sides.

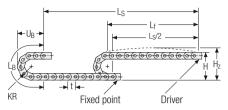
Plastic stay 02.....page 292

Frame stay with hinge in the outer radius

- Plastic profile bars with hinge for light and medium loads. Assembly without screws.
- Inside: swivable to both sides.
- **Inside:** release by turning by 90°.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at


tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: online-engineer.de

M0475 | Installation dim. | Unsupported

Unsupported arrangement

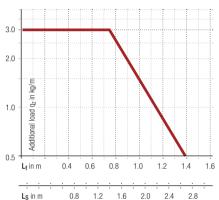
KR Н H_{z} L_B U_B [mm] [mm] [mm] [mm] [mm] 174 268 55 149 122 75 189 214 331 142 100 239 264 410 167 130 299 324 504 197 359 384 598 227 160 200 439 464 724 267 250 539 564 881 317 300 639 664 1038 367

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 1.7$ kg/m. For other inner widths, the maximum additional load changes.

Velocity up to 10 m/s



Acceleration up to 50 m/s2

Additional load up to 3.0 kg/m

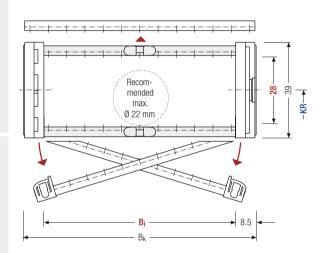
Inner widths

tsubaki-kabelschlepp.com/m

MK0475 RD 1 | Dimensions · Technical data

Plastic stay 01 – frame stay with hinge in the inner radius

- Plastic profile bars with hinge for light and medium loads. Assembly without screws.
- Available customized in 8 mm grid.
- Outside: release by turning by 90°. Inside: swiyable to both sides.



Stay arrangement on every chain link (VS: fully-stayed)

B_i 24 – 280 mm in **8 mm width sections**

ĵ

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

h _i	h _G	B i	B _k	KR	q_k
[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
28	39	24 – 280	B _i + 17	55 75 100 130 160 200 250 300	0.79 - 3.03

^{*} in 8 mm width sections

MK0475 . 128 . RD 1 . 100 - 1425 VS Type B _I [mm] Stay variant KR [mm] L _K [mm] Stay arrangement		IVINU4/3		ו עח.	100	1720	Vo
--	--	----------	--	-------	-----	------	----

MK0475 RD 1 | Inner distribution | TS0 · TS1 · TS2

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every $2^{\rm nd}$ chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

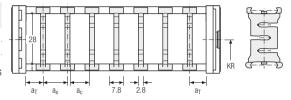
The dividers are easily attached to the stay for applications with lateral acceleration and for applications laying on their side by simply turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbars (Version B).

The groove in the frame stay faces outwards.

Inner heights

Inner widths

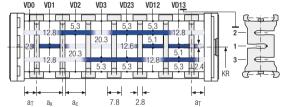
Increments



:subaki-kabelschlepp.com/m

Divider system TS0 without height separation

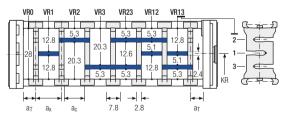
Vers.				a _{x grid} [mm]	
Α	6	7.8	5	_	-
В	12	8	5.2	8	-

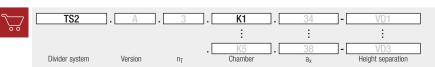

The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	
Α	6	7.8	5	_	2
В	12	8	5.2	8	2

The dividers can be moved within the cross section (version A) or fixed (version B).




Divider system TS2 with partial height separation

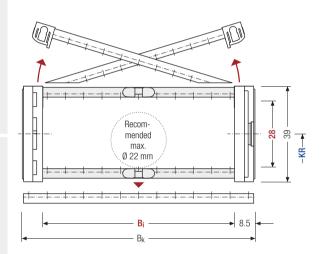
* for VR0

With grid distribution (8 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section (version A) or fixed (version B).

MK0475 RD 2 | Dimensions · Technical data

Plastic stay 02 – frame stay with hinge in the outer radius

- Plastic profile bars with hinge for light and medium loads. Assembly without screws.
- Available customized in 8 mm grid.
- Outside: swivable to both sides. Inside: release by turning by 90°.



Stay arrangement on every chain link (VS: fully-stayed)

B_i 24 – 280 mm In **8 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{\rm K} \approx \frac{L_{\rm S}}{2} + L_{\rm B}$$

Cable carrier length L_k rounded to pitch t

h	i I	h _G	B i	B _k	KR	q_k
[m	m] [n	nm]	[mm]*	[mm]	[mm]	[kg/m]
2	8 :	39	24 – 280	B _i + 17	55 75 100 130 160 200 250 300	0.79 – 3.03

^{*} in 8 mm width sections

MK0475 . 128 . RD 2 . 100 - 1425 VS Type B _I [mm] Stay variant . KR [mm] - L _k [mm] Stay arrangement	ND 2 . 100 - 1425 V3
--	----------------------

MK0475 RD 2 | Inner distribution | TS0 · TS1 · TS2

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

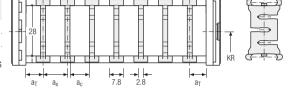
The dividers are easily attached to the stay for applications with lateral acceleration and for applications laying on their side by simply turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbars (Version B).

The groove in the frame stay faces outwards.

Inner heights

Inner widths

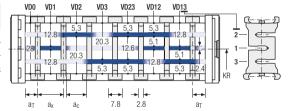
Increments



:subaki-kabelschlepp.com/m

Divider system TS0 without height separation

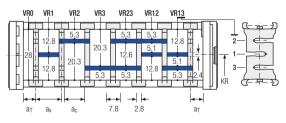
Vers.	a _{T min} [mm]	a _{x min} [mm]	$\begin{array}{c} a_{\text{c min}} \\ [\text{mm}] \end{array}$	a _{x grid} [mm]	n _T min
Α	6	7.8	5	_	-
В	12	8	5.2	8	-

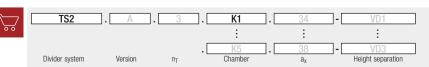

The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T min
Α	6	7.8	5	-	2
В	12	8	5.2	8	2

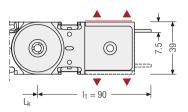
The dividers can be moved within the cross section (version A) or fixed (version B).

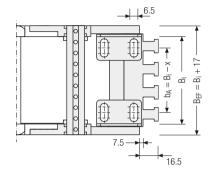



Divider system TS2 with partial height separation

* for VR0

With grid distribution (8 mm grid). The dividers are fixed by the height separation, the complete divider system is movable in the cross section (version A) or fixed (version B).





M0475 | End connectors | Plastic/Steel

End connectors - plastic/steel (with strain relief)

Link end connector made of plastic, end connector made of sheet steel with screw-fixed aluminum strain relief. The connection variants on the fixed point and on the driver can be combined and, if required, changed afterwards.

Assembly options

B _i [mm]	x [mm]	n _z
40	17.5	3
56	21.5	4
80	17.5	6
104	19.0	8
128	19.5	9
152	17.5	11
192	18.5	14

MAI (0 (0 (0 (0 (0 (0 Tiver MII Fixed point FAI

Connection point F - fixed point

M - driver

Connection surface

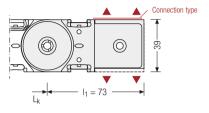
I - connection surface inside

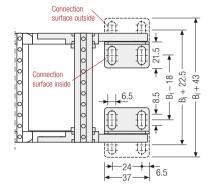
Connection type

A – threaded joint outside (standard)

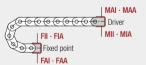
I – threaded joint inside

Plastic/steel].	F	А	
Plastic/steel].	M	А	
End connector		Connection point	Connection type	Connection surface


Inner


heights

28


End connectors - plastic/steel

Plastic link end connector, steel end connector. The connection variants on the fixed point and on the driver can be combined and, if required, changed afterwards.

▲ Assembly options

Connection point

F - fixed point

M - driver

Connection surface

connection surface inside

A – connection surface outside

Connection type

A - threaded joint outside (standard)

threaded joint inside

F - flange connection

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

M0650

Inner heights 38 – 42 mm

Inner widths 50 - 400 mm

Bending radii 75 – 350 mm

Stay variants

Aluminum stay RSpage 298

Standard frame stay "The standard"

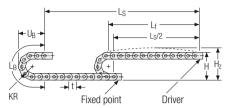
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by turning by 90°.

Plastic stay RE page 302

- Frame screw-in stav
- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by turning by 90°.

Additional stay variants on request

Aluminum stay LG Optimum cable routing in the neutral bending line.


Aluminum stay RMA For guiding very large cable diameters.

Plastic stay RD Plastic profile bars with hinge.

M0650 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
75	207	242	366	169
95	247	282	429	189
115	287	322	492	209
145	347	382	586	239
175	407	442	680	269
220	497	532	822	314
260	577	612	948	354
275	607	642	994	369
300	657	692	1073	394
350	757	792	1230	444

Inner heights

38

Inner widths

50 400

tsubaki-kabelschlepp.com/m

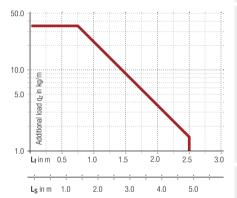
Load diagram for unsupported length depending on the additional load.

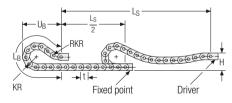
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.4$ kg/m. For other inner widths, the maximum additional load changes.

Velocity up to 8 m/s

Travel length


up to 4.8 m


Acceleration up to 40 m/s2

Additional load up to 35 kg/m

Gliding arrangement | GO module with chain links optimized for gliding

KR [mm]	H [mm]	n _{RKR}	L _B [mm]	U _B [mm]
145	171	5	1625	691
175	171	5	1690	718
220	171	5	1950	810
260	171	5	2275	926
275	171	5	2405	973
300	171	5	2535	1014
350	171	5	2925	1152

Velocity up to 2 m/s

Acceleration up to 2-3 m/s2 The GO module mounted on the driver is a defined sequence of 5 different KR/RKR link plates. Glide shoes have to be used for gliding applications.

Travel length up to 60 m

Additional load up to 35 kg/m

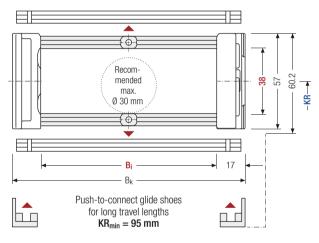
The gliding cable carrier has to be routed in a channel. See p. 654.

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

MC0650 RS | Dimensions · Technical data

Aluminum stay RS – standard frame stay

- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by turning by 90°.


Stay arrangement on every 2nd chain link, **standard** (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 75 - 400 \text{ mm}$ in **1 mm width sections**

Ű

The maximum cable diameter strongly depends on the bending radius and the desired cable type.
Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
38	57	60.2	75 – 400	B _i + 34	75 95 115 145 175 220 260 275 300 350	

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

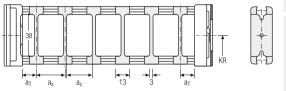
For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping on a socket (available as an accessory).

The bushing additionally serves as a spacer between the dividers and is available in 1 mm sections between 3 -50 mm (Version B).

Inner heights

Inner widths

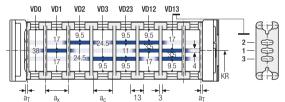
Increments



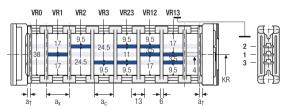
subaki-kabelschlepp.com/m

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	6.5	13	10	_


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation


The dividers can be moved in the cross section.

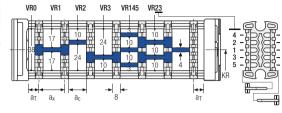
Divider system TS2 with partial height separation

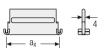
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	21	15	2

With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

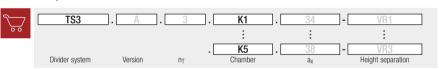

MC0650 RS | Inner distribution | TS3


Divider system TS3 with height separation made of plastic partitions

A 4 16/42* 8 2	Α

^{*} For aluminum partitions

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

	a _x (center distance of dividers) [mm]										
a_{c} (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system.

Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$ (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

More product information online

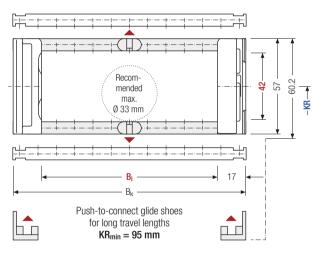
Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

ME0650 RE | Dimensions · Technical data

Plastic stay RE – screw-in frame stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Available customized in 8 mm grid.
- Outside/inside: release by turning by 90°.


Stay arrangement on every 2nd chain link, **standard** (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 50 - 266 \text{ mm}$ in **8 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type.
Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	KR	q_k
[mm	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
42	57	60.2	50 – 266	B _i + 34	75 95 115 145 175 220 260 275 300 350	2.00 - 2.84

^{*} in 8 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

ME0650 RE | Inner distribution | TS0 · TS1 · TS2

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

Divider system TS0 without height separation

[mm] min

8

nT

The dividers are easily attached to the stay for applications with lateral acceleration and for applications laying on their side by simply turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbars (Version B).

The groove in the frame stay faces outwards.

Inner heights

Inner widths

Increments

subaki-kabelschlepp.com/m

Divider system TS1 with continuous height separation

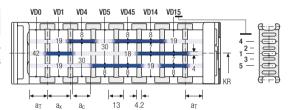
Vers.				a _{x grid} [mm]	
Α	6.5	13	8.8	-	2

Vers. a_{T min} a_{x min} a_{c min} a_{x grid}

13

The dividers can be moved within the cross section (version A) or fixed (version B).

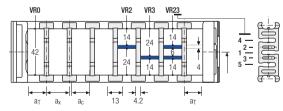
8.8


11.8

[mm] [mm] [mm]

6.5

Α


The dividers can be moved within the cross section.

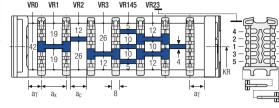
Divider system TS2 with partial height separation

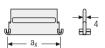
Vers.				a _{x grid} [mm]	n _T min
Α	6.5	13	8.8	-	2
В	13	16	11.8	8	2

With grid distribution (8 mm grid). The dividers are fixed by the height separation, the complete divider system is movable in the cross section (version A) or fixed (version B).

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

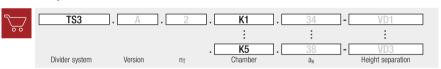

ME0650 RE | Inner distribution | TS3


Divider system TS3 with height separation made of plastic partitions

Vers.		a _{x min} [mm]		n _{T min}
Α	4	16 / 42*	8	2
		10772		·

^{*} For aluminum partitions

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

	a _x (center distance of dividers) [mm]										
	a _c (nominal width of inner chamber) [mm]										
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

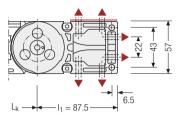
When using **plastic partitions with a_x > 112 mm**, we recommend an additional center support with a **twin divider** ($S_T = 3$ mm). Twin dividers are also suitable for retrofitting in the partition system.

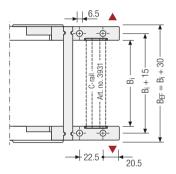
Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$ (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

More product information online

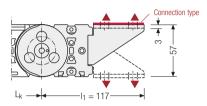

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

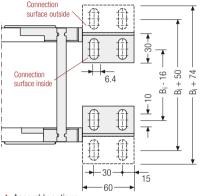


Configure your custom cable carrier: here onlineengineer.de

Universal end connectors UMB plastic (standard)

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.





Recommended tightening torque: 11 Nm for cheese-head screws ISO 4762 - M6 - 8.8

End connectors plastic/steel

Plastic link end connector, steel end connector. The connection variants on the fixed point and on the driver can be combined and, if required, changed afterwards,

Assembly options

Connection point

F – fixed point

M - driver

Connection type

U – universal mounting bracket

Connection point M - driver

F – fixed point

 – connection surface inside A – connection surface outside

Connection surface

Connection type

A – threaded joint outside (standard)

threaded joint inside

F – flange connection

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

Inner widths

tsubaki-kabelschlepp.com/m

M0950

Pitch 95 mm

Inner heights 54 – 58 mm

Inner widths 45 – 600 mm

Bending radii 140 – 380 mm

Stay variants

Aluminum stav RS page 308

Standard frame stay "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by turning by 90°.

Aluminum stay RV page 310

Frame stay, reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Outside/inside: release by turning by 90°.

Aluminum stay RMpage 314

Frame stay, solid

- Aluminum profile bars for heavy loads and maximum cable carrier widths. Double threaded joints on both sides "Heavy Duty".
- Inside/outside: Threaded joint easy to release.

Plastic stay RE page 316

Frame screw-in stay

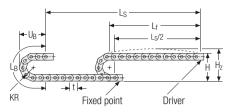
- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by turning by 90°.

Additional stay variants on request

Aluminum stay LG Optimum cable routing in the neutral bending line.

Aluminum stay RMA For guiding very large cable diameters.

Aluminum stay RMR Gentle cable guiding with rollers.



Plastic stay RD Plastic profile bars with hinge.

Inner heights

54 58

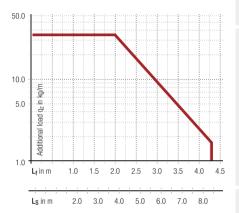
Unsupported arrangement

KK	П	ΗZ	LB	UB
[mm]	[mm]	[mm]	[mm]	[mm]
140	360	405	630	275
170	420	465	725	305
200	480	525	819	335
260	600	645	1007	395
290	660	705	1102	425
320	720	765	1196	445
380	840	885	1384	515

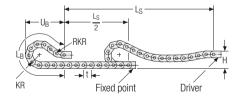
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 4.5 \text{ kg/m}$. For other inner widths, the maximum additional load changes.



Acceleration up to 30 m/s2


M0950 | Installation dim. | Unsupported · Gliding

Gliding arrangement | GO module with chain links optimized for gliding

H [mm]	n _{RKR}	L _B [mm]	U_B [mm]
240	4	1710	773
240	4	1995	888
240	4	2565	1114
240	4	2755	1183
240	4	3040	1296
240	4	3610	1523
	[mm] 240 240 240 240 240 240	[mm] 240 4 240 4 240 4 240 4 240 4 240 4	[mm] [mm] 240 4 1710 240 4 1995 240 4 2565 240 4 2755 240 4 3040

Velocity up to 2 m/s

up to 2-3 m/s2

Acceleration

The GO module mounted on the driver is a defined sequence of 4 different KR/RKR link plates.

Glide shoes have to be used for gliding applications.

The gliding cable carrier has to be routed in a channel. See p. 654.

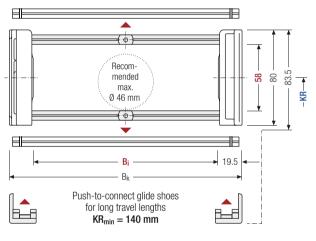
Travel length up to 80 m

Subject to change.

MC0950 RS │ Dimensions · Technical data

Aluminum stay RS – standard frame stay

- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by turning by 90°.


Stay arrangement on every 2nd chain link, **standard** (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 75 - 400 \text{ mm}$ in **1 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

hį	h _G	h _{Gʻ}	$h_{G^{\iota}}$ Offroad	Bi	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
58	80	83.5	86	75 – 400	B _i + 39	140 170 200 260 290 320 380	2.93 - 4.71

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every $2^{\rm nd}$ chain link (HS).

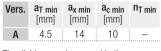
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping on a socket (available as an accessory).

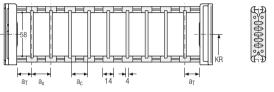
The socket additionally serves as a spacer between the dividers and is available in 1 mm sections between 3 – 50 mm as well as 16.5 and 21.5 mm (Version B)

Inner heights

Inner widths

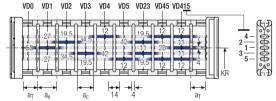


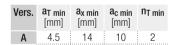
Increments

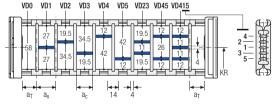


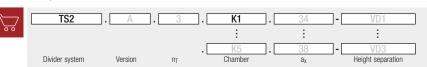
:subaki-kabelschlepp.com/m

Divider system TS0 without height separation


The dividers can be moved in the cross section.

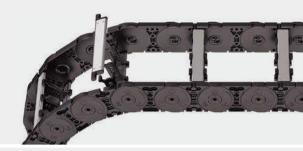

Divider system TS1 with continuous height separation


The dividers can be moved in the cross section.



Divider system TS2 with partial height separation

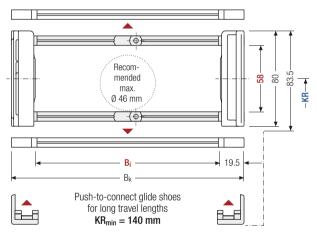
With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.



MC0950 RV | Dimensions · Technical data

Aluminum stay RV – frame stay reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by turning by 90°.


Stay arrangement on every 2nd chain link, **standard** (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 75 - 500 \text{ mm}$ in **1 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Ű

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

hį	h _G	h _{Gʻ}	$h_{G^{\iota}}$ Offroad	B _i	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
58	80	83.5	86	75 – 500	B _i + 39	140 170 200 260 290 320 380	3.32 - 6.02

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

MC0950 RV | Inner distribution | TS0 · TS1 · TS2

Divider systems

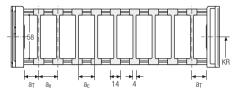
As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS). As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4.5	14	10	2

The dividers can be moved in the cross section.

Vers. at min at max ax min ac min [mm] [mm] [mm]


25

The dividers can be moved in the cross

14

4.5

section.

VD2 VD3 VD4

19.5

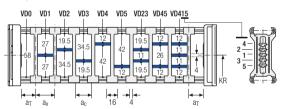
Inner heights

Inner widths

Increments

:subaki-kabelschlepp.com/m

Divider system TS2 with partial height separation


[mm] min

> 10 2

Divider system TS1 with continuous height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4.5	14	10	2

With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

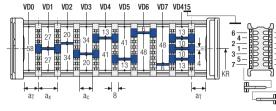
VD5 VD23 VD45 VD415

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

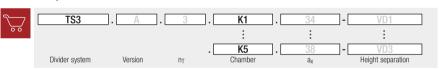

MC0950 RV | Inner distribution | TS3

Divider system TS3 with height separation made of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

	a _x (center distance of dividers) [mm]										
a _c (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system.

Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$ (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

Key for abbreviations

on page 12

MC0950 RM | Dimensions · Technical data

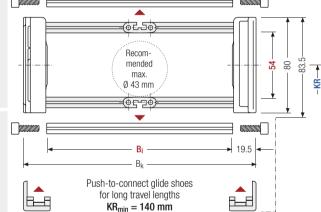
Aluminum stay RM -

frame stay solid

- Aluminum profile bars for heavy loads and maximum cable carrier widths. Double threaded joints on both sides "Heavy Duty".
- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.

I:I=/AVA7 DUTY

Stay arrangement on every 2nd chain link, standard (HS: half-staved)


Stay arrangement on each chain link (VS: fully-stayed)

B_i 75 - 600 mm

in 1 mm width sections

Design guidelines from page 38

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

technik@kabelschlepp.de Technical support:

Online-engineer.de
ğ

h _i	h _G	u	h _{Gʻ} Offroad	B _i	B _k	KR	q_k
[mm]	[mm]		[mm]	[mm]*	[mm]	[mm]	[kg/m]
54	80		86	75 – 600	B _i + 39	140 170 200 260 290 320 380	3.63 - 6.55

* in 1 mm width sections

Order example

Divider systems

a_{T min}

[mm]

a_{x min}

[mm]

14

The dividers can be moved in the cross

Vers

section.

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

Divider system TS0 without height separation

[mm]

10

ac min n_{T min}

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

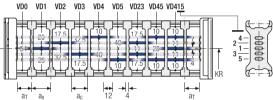
Inner heights

Inner widths

Incre-

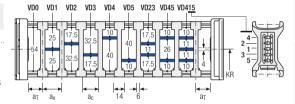
:subaki-kabelschlepp.com/m

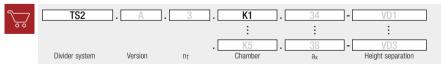
1 mm


ments

Vers. at min at max ax min ac min [mm] [mm] [mm] [mm] min 25 12 8 2

Divider system TS1 with continuous height separation

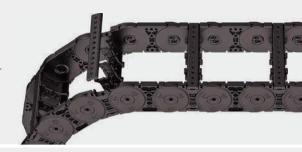

The dividers can be moved in the cross section.


Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]			n _{T min}
Α	7	16	10	2

With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

Order example


Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_Y] (as seen from the driver).

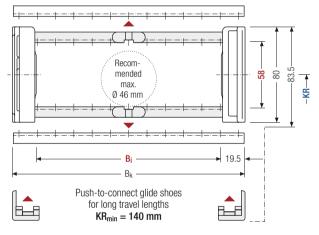
If using divider systems with height separation (TS1, TS2) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

ME0950 RE | Dimensions · Technical data

Plastic stay RE screw-in frame stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Available customized in 16 mm grid.
- Outside/inside: release by turning by 90°.

Stay arrangement on every 2nd chain link, standard (HS: half-staved)



Stay arrangement on each chain link (VS: fully-stayed)

B: 45 - 557 mm

in 16 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

ŀ	ı _i	h _G	h _{Gʻ}	$h_{G^{\iota}}$ Offroad	Bi	B_k	KR	q_k
[m	ım]	[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
5	8	80	83.5	86	45 – 557	B _i + 39	140 170 200 260 290 320 380	3.00 - 6.20

^{*} in 16 mm width sections

Order example

ME0950 RE | Inner distribution | TS0 · TS1 · TS2

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

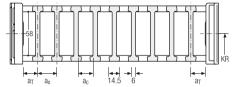
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

The dividers are easily attached to the stay for applications with lateral acceleration and for applications laying on their side by simply turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbars (Version B). The groove in the frame stay faces outwards.

Inner heights

Inner widths

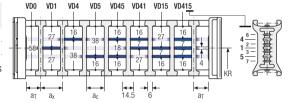
Increments



:subaki-kabelschlepp.com/m

Divider system TS0 without height separation

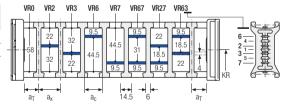
Vers.				a _{x grid} [mm]	n _T min
Α	7.5	14.5	8.5	-	2
В	22.5	16	10	16	2


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	n _T
Α	7.25	14.5	8.5	_	2
В	22.5	16	10	16	2

The dividers can be moved within the cross section (version A) or fixed (version B).



Divider system TS2 with partial height separation

Vers.		$\begin{array}{c} a_{x\;min}\\ [mm] \end{array}$		a _{x grid} [mm]	n _T min
Α	9	14.5*/20	8.5*/14	_	2
В	22.5	16*/32	10*/26	16	2

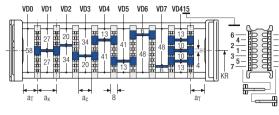
* for VR0

With grid distribution (16 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

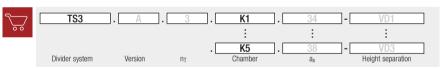

ME0950 RE | Inner distribution | TS3

Divider system TS3 with height separation made of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}	
Α	4	16 / 42*	8	2	

^{*} For aluminum partitions

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

	a _x (center distance of dividers) [mm]										
a _c (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system.

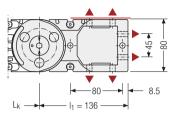
Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$ (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

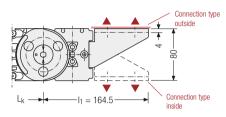


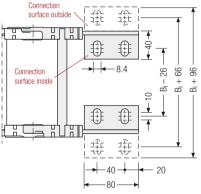
Configure your custom cable carrier here: onlineengineer.de

M0950 | End connectors

Universal end connectors UMB plastic (standard)

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.



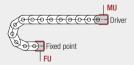


Recommended tightening torque: 27 Nm for cheese-head screws ISO 4762 - M8 - 8.8

End connectors plastic/steel

Plastic link end connector, steel end connector. The connection variants on the fixed point and on the driver can be combined and, if required, changed afterwards.

Assembly options


Connection point

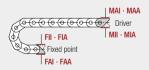
F - fixed point

M – driver

Connection type

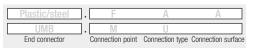
U – universal mounting bracket

Connection point Connection surface


F – fixed point M - driver

 – connection surface inside A – connection surface outside

Connection type


A – threaded joint outside (standard)

threaded joint inside

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

Inner heights

Inner widths

subaki-kabelschlepp.com/m

M1250

Pitch 125 mm

Inner heights 69 – 72 mm

Inner widths 71 – 800 mm

Bending radii 180 – 500 mm

Stay variants

Aluminum stav RS page 322

Standard frame stay "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by turning by 90°.

Aluminum stay RV page 324

Frame stay, reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Outside/inside: release by turning by 90°.

Aluminum stay RMpage 328

Frame stay, solid

- Aluminum profile bars for heavy loads and maximum cable carrier widths. Double threaded joints on both sides "Heavy Duty".
- Inside/outside: Threaded joint easy to release.

Plastic stay RE page 330

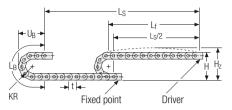
Frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by turning by 90°.

Additional stay variants on request

Aluminum stay LG Optimum cable routing in the neutral bending line.

Aluminum stay RMA For guiding very large cable diameters.


Aluminum stay RMR Gentle cable guiding with rollers.

Plastic stay RD Plastic profile bars with hinge.

M1250 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

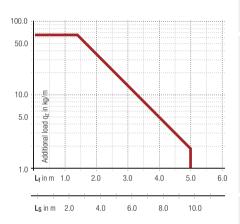
KR	Н	H_z	L_{B}	U_B
[mm]	[mm]	[mm]	[mm]	[mm]
180	456	506	816	353
220	536	586	942	393
260	616	666	1067	433
300	696	746	1193	473
340	776	826	1319	513
380	856	906	1444	553
500	1096	1146	1821	673

Inner heights

69 72

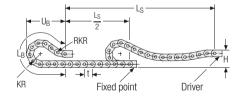
Inner widths

71 800


Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 4.5 \text{ kg/m}$. For other inner widths, the maximum additional load changes.



Travel length up to 9.7 m

Acceleration up to 25 m/s²

Gliding arrangement | GO module with chain links optimized for gliding

KR	Н	n _{RKR}	L_{B}	U_B
[mm]	[mm]		[mm]	[mm]
220	288	4	2500	1088
260	288	4	2625	1140
300	288	4	2750	1177
340	288	4	3125	1318
380	288	4	3375	1403
500	288	4	4375	1770
500	288	4	4375	1770

Velocity up to 2 m/s

The GO module mounted on the driver is a defined sequence of 4 different KR/RKR link plates. Glide shoes have to be used for gliding applications.

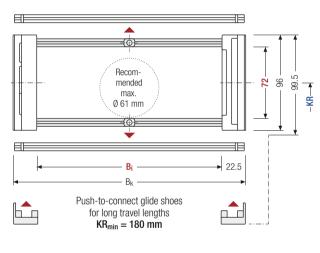
The gliding cable carrier has to be routed in a channel. See p. 654.

Travel length up to 100 m

MC1250 RS | Dimensions · Technical data

Aluminum stay RS – standard frame stay

- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm grid.
- Outside/inside: release by turning by 90°.


Stay arrangement on every 2nd chain link, **standard** (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 75 - 400 \text{ mm}$ in **1 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

 $\begin{array}{c} \text{Cable carrier length L_{k}} \\ \text{rounded to pitch t} \end{array}$

hį	h _G	h _{Gʻ}	$h_{G^{\iota}}$ Offroad	B _i	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
72	96	99.5	103	75 – 400	B _i + 45	180 220 260 300 340 380	500 4.10 – 4.97

^{*} in 1 mm width sections

Order example

MC1250 RS | Inner distribution | TS0 · TS1

Divider systems

Vers.

section.

a_{T min}

[mm]

7.5

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

Divider system TS0 without height separation

[mm]

10

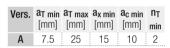
a_{c min} n_{T min}

For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping on a socket (available as an accessory).

The bushing additionally serves as a spacer between the dividers and is available in 1 mm sections between 3-50 mm (Version B).

Inner heights

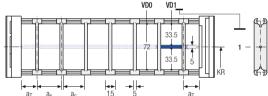
Inner widths


Increments

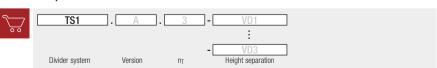
:subaki-kabelschlepp.com/m

1 mm

Divider system TS1 with continuous height separation


a_{x min}

[mm]


15

The dividers can be moved in the cross

The dividers can be moved in the cross section.

Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T].

If using divider systems with height separation (TS1) please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

Key for abbreviations

on page 12

MC1250 RV | Dimensions · Technical data

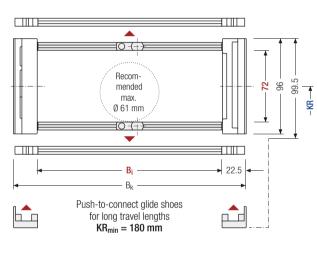
Aluminum stay RV - frame stay reinforced

Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.

- Available customized in 1 mm grid.
- Outside/inside: release by turning by 90°.

Stay arrangement on every 2nd chain link, standard (HS: half-staved)

Stay arrangement on each chain link (VS: fully-stayed)



B: 100 - 600 mm in 1 mm width sections

Design guidelines from page 38

technik@kabelschlepp.de Technical support:

online-engineer.de

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

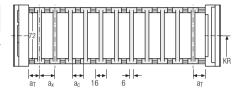
hį	h _G	h _{Gʻ}	$h_{G^{\iota}}$ Offroad	Bi	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
72	96	99.5	103	100 – 600	B _i + 45	180 220 260 300 340 380 50	0 4.40 – 6.18

^{*} in 1 mm width sections

Order example

Type B _i [mm] Stay variant KR [mm] L _k [mm] Stay arrangement
--

Divider systems


As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

Divider system TS0 without height separation

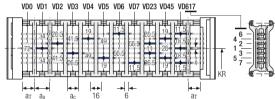
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	8	16	10	2

The dividers can be moved in the cross section.

Inner heights

Inner widths

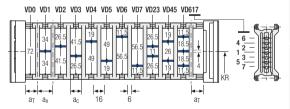
Increments



:subaki-kabelschlepp.com/m

Divider system TS1 with continuous height separation

The dividers can be moved in the cross section.



Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]		n _{T min}
Α	8	16*/20	10*/14	2

* for VR0

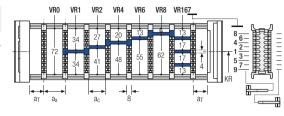
With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

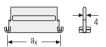
TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

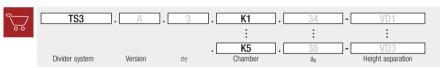

MC1250 RV | Inner distribution | TS3


Divider system TS3 with height separation made of plastic partitions

Vers.		a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16/42**	8	2

^{*} For aluminum partitions

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

a_x (center distance of dividers) [mm]										
a _c (nominal width of inner chamber) [mm]										
18	23	28	32	33	38	43	48	58	64	68
10	15	20	24	25	30	35	40	50	56	60
80	88	96	112	128	144	160	176	192	208	
72	80	88	104	120	136	152	168	184	200	
	10 80	10 15 80 88	a _c (nor a _c) (a _c (nominal w 18 23 28 32 10 15 20 24 80 88 96 112	a _c (nominal width of 18 23 28 32 33 10 15 20 24 25 80 88 96 112 128	a _c (nominal width of inner cf 18	a _c (nominal width of inner chamber) 18 23 28 32 33 38 43 10 15 20 24 25 30 35 80 88 96 112 128 144 160	a _c (nominal width of inner chamber) [mm] 18 23 28 32 33 38 43 48 10 15 20 24 25 30 35 40 80 88 96 112 128 144 160 176	18 23 28 32 33 38 43 48 58 10 15 20 24 25 30 35 40 50 80 88 96 112 128 144 160 176 192	a _c (nominal width of inner chamber) [mm] 18 23 28 32 33 38 43 48 58 64 10 15 20 24 25 30 35 40 50 56 80 88 96 112 128 144 160 176 192 208

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system.

Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$ (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

Inner widths

Increments

tsubaki-kabelschlepp.com/m

Key for abbreviations on page 12

from page 38

MC1250 RM | Dimensions · Technical data

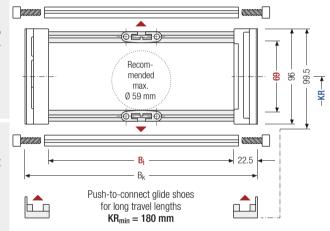
Aluminum stay RM -

frame stay solid

- Aluminum profile bars for heavy loads and maximum cable carrier widths. Double threaded joints on both sides "Heavy Duty".
- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.

THE AVAY DUTY

Stay arrangement on every 2nd chain link, standard (HS: half-staved)


Stay arrangement on each chain link (VS: fully-stayed)

B: 100 - 800 mm

in 1 mm width sections

Design guidelines

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

hį	h _G	u	$h_{G^{\prime}}$ Offroad	B _i	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
69	96	99.5	103	100 - 800	B _i + 45	180 220 260 300 340 380 500	4.14 - 8.48

^{*} in 1 mm width sections

Order example

Type B _i [mm] Stay variant KR [mm] L _k [mm] Stay arrangement
--

Inner

heights

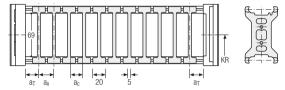
Inner widths 100 800

Increments

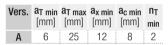
1 mm

:subaki-kabelschlepp.com/m

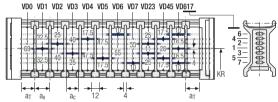
Divider systems


As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2^{nd} chain link (HS).

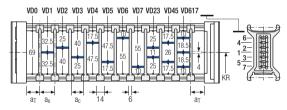
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).


Divider system TS0 without height separation

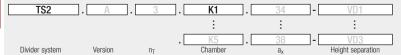
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	10	20	15	-


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation


The dividers can be moved in the cross section.

Divider system TS2 with partial height separation


Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	7	14	8	2

With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section. Movable TS1 dividers can be used as an option.

Order example

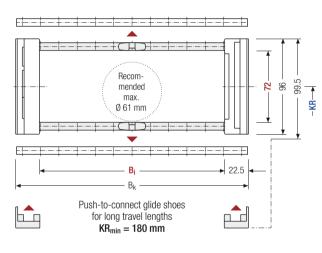
Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section $[n_{\overline{1}}]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_{\overline{1}}/a_{\overline{X}}]$ (as seen from the driver).

If using divider systems with height separation (TS1 – TS2) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

ME1250 RE | Dimensions · Technical data

Plastic stay RE – screw-in frame stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Available customized in 16 mm grid.
- Outside/inside: release by turning by 90°.


Stay arrangement on every 2nd chain link, **standard** (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 71 - 557 \text{ mm}$ in **16 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

For rough environmental conditions, we recommend the use of OFFROAD glide shoes with 80 % higher wear volume.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

h _i [mm]	u	u	h _{Gʻ} Offroad [mm]	B _i [mm]	B _k [mm]			KR [mm]				q_k [kg/m]
72	96	99.5	103	71 – 551	B _i + 45	180	220 2	260 300	340	380	500	4.30 - 5.80

^{*} in 16 mm width sections

Order example

MC1250 RE | Inner distribution | TS0 · TS1 · TS2

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS).

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

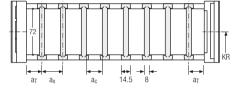
The dividers are easily attached to the stay for applications with lateral acceleration and for applications laying on their side by simply turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbars (Version B).

The groove in the frame stay faces outwards.

Inner heights

Inner widths

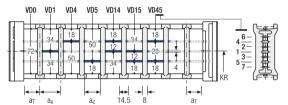
Increments

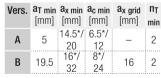


:subaki-kabelschlepp.com/m

Divider system TS0 without height separation

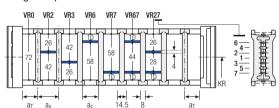
Vers.				a _{x grid} [mm]	n _T min
Α	5	14.5	6.5	_	-
В	19.5	16	8	16	-


The dividers can be moved within the cross section (version A) or fixed (version B).


Divider system TS1 with continuous height separation

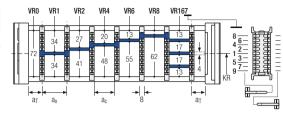
Vers.				a _{x grid} [mm]	
Α	5	14.5	6.5	_	2
В	19.5	16	8	16	2

The dividers can be moved within the cross section (version A) or fixed (version B).



Divider system TS2 with partial height separation

* for VRO

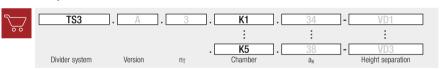

ME1250 RE | Inner distribution | TS3

Divider system TS3 with height separation made of plastic partitions

Vers.		a _{x min} [mm]		n _{T min}
Α	4	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

a _x (center distance of dividers) [mm]											
	a _c (nominal width of inner chamber) [mm]										
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112 \ mm$, we recommend an additional center support with a **twin divider** (S_T = 4 mm). Twin dividers are also suitable for retrofitting in the partition system.

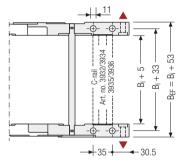
Order example

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$ (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] as viewed from the left carrier belt. You are welcome to add a sketch to your order.

More product information online

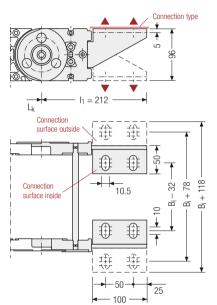
Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support



Configure your custom cable carrier: here onlineengineer.de

Universal end connectors UMB - plastic (standard)

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.

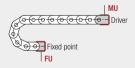


Recommended tightening torque: 54 Nm for cheese-head screws ISO 4762 - M10 - 8.8

End connectors - plastic/steel

Plastic link end connector, steel end connector. The connection variants on the fixed point and on the driver can be combined and, if required, changed afterwards,

▲ Assembly options


Connection point

F – fixed point

M – driver

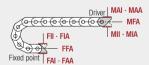
Connection type

U – universal mounting bracket

Connection point

F - fixed point M - driver

Connection surface – connection surface inside


A – connection surface outside

Connection type

A – threaded joint outside (standard)

threaded joint inside

F – flange connection

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

Inner widths

tsubaki-kabelschlepp.com/m

M1300

Pitch 130 mm

Inner height 87 mm

Inner widths 100 - 800 mm

Bending radii 150 – 500 mm

Stay variants

Aluminum stay RMF......page 336

Frame stay, solid

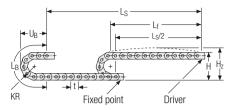
- Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- Inside/outside: Threaded joint easy to release.

Aluminum stav RMSpage 338

Frame stay solid with ball joint

- Aluminum profile bars with plastic ball joint for heavy loads and large cable carrier widths. Assembly without screws.
- Inside/outside: Swivable and detachable.

Additional stay variants on request


Aluminum stay RM Aluminum profile bars for high loads.

Aluminum stay LG Optimum cable routing in the neutral bending line.

M1300 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
150	480	540	732	340
195	570	630	873	385
240	660	720	1014	430
280	740	800	1140	470
320	820	880	1266	510
360	900	960	1391	550
400	980	1040	1517	590
500	1180	1240	1831	690

Inner heights

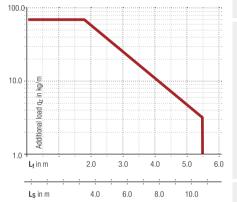
Inner widths

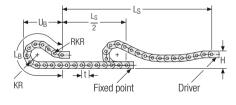
tsubaki-kabelschlepp.com/m

Load diagram for unsupported length depending on the additional load. Sagging of the cable carrier is technically permitted

for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 8.0 \text{ kg/m}$. For other inner widths, the maximum additional load changes.


Velocity up to 5 m/s


Acceleration up to 25 m/s²

Additional load up to 70 kg/m

Gliding arrangement | GO module with chain links optimized for gliding

KR [mm]	H [mm]	n _{RKR}	L _B [mm]	U_B [mm]
240	360	4	2730	1180
280	360	4	2750	1190
320	360	4	2880	1240
360	360	4	3140	1331
400	360	4	3530	1477
500	360	4	4310	1756

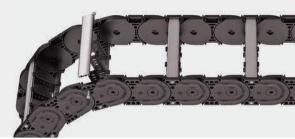
Velocity up to 2 m/s

Acceleration up to 2-3 m/s2 The GO module mounted on the driver is a defined sequence of 4 different KR/RKR link plates.

Glide shoes are required for gliding applications.

The gliding cable carrier has to be routed in a channel. See p. 654.

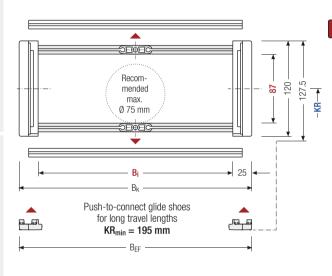
Travel length up to 120 m


Additional load up to 70 kg/m

MC1300 RMF | Dimensions · Technical data

Aluminum stay RMF – frame stay solid

- Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.


Stay arrangement on every 2nd chain link, **standard** (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

 B_i 100 – 800 mm in **1 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

hį	h _G	h _{Gʻ}	Bi	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
87	120	127.5	100 - 800	$B_{i} + 50$	150 195 240 280 320 360 400 500	6.24 - 9.59

^{*} in 1 mm width sections

Order example

MC1300 RMF | Inner distribution | TS0 · TS1 · TS3

Divider systems

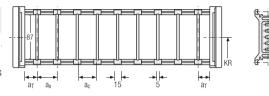
As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS). As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (Version B).

Inner heights

Inner widths

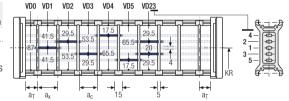
Increments



:subaki-kabelschlepp.com/m

Divider system TS0 without height separation

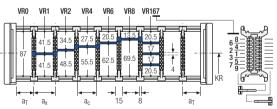
Vers.				a _{x grid} [mm]	
Α	7.5	15	10	-	_
В	10	15	10	5	-

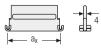

The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	a _{x grid} [mm]	n _T
Α	7.5	15	10	-	2
В	10	15	10	5	2

The dividers can be moved within the cross section (version A) or fixed (version B).




Divider system TS3 with partial height separation

Vers.		a _{x min} [mm]		n _{T min}
Α	7.5	16/42*	8	2

* For aluminum partitions

With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

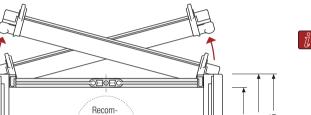
Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

a_x (center distance of dividers) [mm]											
a _c (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
 8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
 70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 5$ mm). Twin dividers are also suitable for retrofitting in the partition system.

Aluminum stay RMS frame stay reinforced

- Aluminum profile bars with plastic ball joint for heavy loads and large cable carrier widths. Assembly without screws.
- Available customized in 1 mm grid.
- Inside/outside: Swivable and detachable.


Stay arrangement on every 2nd chain link, standard (HS: half-stayed)

Stay arrangement on each chain link (VS: fully-stayed)

B_i 100 - 800 mm in 1 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t

<u> </u>	_	1 15	
	Recommended max.		- 120
	0 75 mm		
	B _i ————————————————————————————————————	25	
	Push-to-connect glide shoes for long travel lengths KR _{min} = 195 mm		
4	——————————————————————————————————————	-	

hi	h _G	h _{Gʻ}	Bi	B_k	KR	q_k		
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]		
87	120	127.5	100 - 800	B _i + 50	150 195 240 280 320 360 400 500	6.31 - 9.65		
+ 1- 4	First and the section							

in 1 mm width sections

Order example

MC1300 RMS | Inner distribution | TS0 · TS1 · TS3

Divider systems

As a standard, the divider system is mounted on each crossbar – for stay mounting on every 2nd chain link (HS). As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

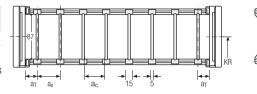
For applications with lateral acceleration and lying on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (Version B).

Inner heights

Inner widths

100 800

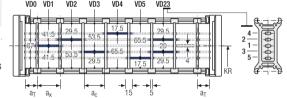
> Increments



:subaki-kabelschlepp.com/m

Divider system TS0 without height separation

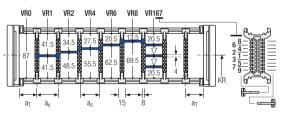
Vers.	$\begin{array}{c} a_{T \; min} \\ [mm] \end{array}$	a _{x min} [mm]	$\begin{array}{c} a_{\text{c min}} \\ [\text{mm}] \end{array}$	a _{x grid} [mm]	n _T mir
Α	15.5	15	10	_	_
В	18.5	15	10	5	-

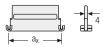

The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	
Α	15.5	15	10	-	2
В	18.5	15	10	5	2

The dividers can be moved within the cross section (version A) or fixed (version B).




Divider system TS3 with partial height separation

Vers.		a _{x min} [mm]		n _{T min}
Α	15.5	16/42*	8	2

* For aluminum partitions

With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

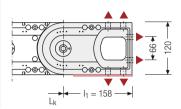
Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

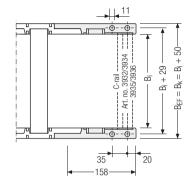
a_x (center distance of dividers) [mm]											
a _c (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
 8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
 70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_X > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 5$ mm). Twin dividers are also suitable for retrofitting in the partition system.

Key for abbreviations on page 12

Design guidelines from page 38


technik@kabelschlepp.de Technical support:


online-engineer.de

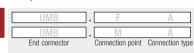
M1300 | End connectors

Universal end connectors UMB - plastic (standard)

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom, face on or from the side.

▲ Assembly options

Recommended tightening torque: 54 Nm for cheese-head screws ISO 4762 - M10 - 8.8


Connection point

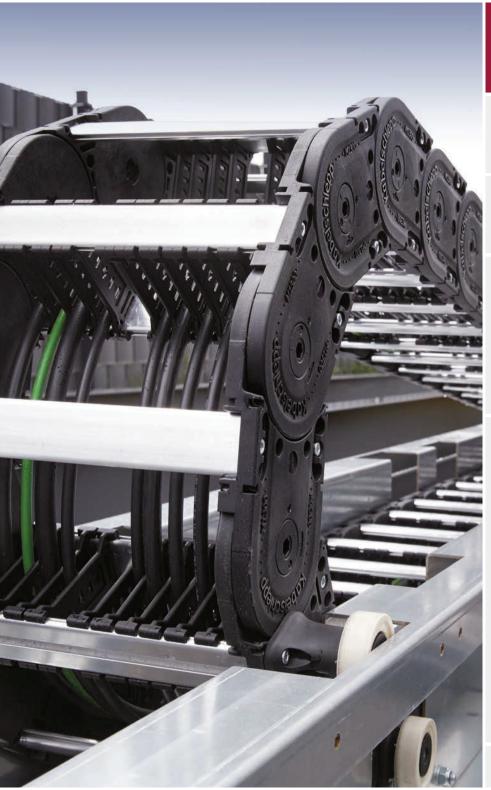
F - fixed point M - driver

Connection type

U - universal mounting bracket

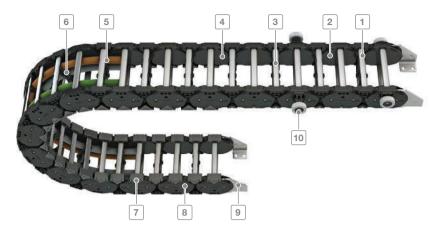
Order example

More product information online



Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de


tsubaki-kabelschlepp.com/m

TKHD series

TKHD series | Overview

- Aluminum stavs available in 1 mm width sections
- 2 Plastic chain link plates
- 3 Quick and easy opening to the inside or outside for cable laying
- 4 Cable-friendly interior - no interfering edges
- 5 Fixable dividers
- 6 Dividers and subdivision for separating the cables
- 7 Replaceable glide shoes for increased service life in gliding application
- 8 Robust, multiple stop system
- 9 Steel installation brackets

heights

Inner

Inner widths

10 RSC-system (roller supported system)

Features

- Massive, enclosed, stain-repellend stop system
- Massive sidebands through robust double fork-bracket-construction
- Sidebands easy to assemble
- Reinforced pin bore connection
- Integrated noise damping
- Integrated brake
- Quick and easy opening to the inside or outside for cable laying
- Soil-resistant outer contour

- Easy change of components
- Maintenance-free
- Symmetrical force curve in the sideband
- Quiet and low-wear operating through polygonoptimized contour and radii

Variable vertical and horizontal inner distribution optional with fixable dividers

Suitable also for rollermounted application (RSC)

Replaceable glide shoes for longer service life in gliding applications

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	B _{i-} grid [mm]	t [mm]	KR [mm]	Addi- tional load ≤ [kg/m]	d _{max} [mm]	
	obe				$\overline{\longleftrightarrow}$	\longleftrightarrow	X mm		×			
TKHD90												
		RMF	87	117	100 – 800	170 – 870	1	90	250 – 360	100	69	
X X												

TKHD series

TKHD series | Overview

Unsuppo	rted arraı	ngement	Gliding	g arrange	ment		Inner dis	tribution		Installa	ation va	ariants	Page
	v _{max} ≤ [m/s]	a max ≤ [m/s²]	$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a_{max} ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	ng on the side	rotating arrangement	Pa
					<u> </u>			H		vertica	Ι <mark>Σ</mark>	arra	
13.5	5	2.5	200	2	2.5	•	•	-	-	•	-	-	348

TKHD9

Key for abbreviations on page 38

Design guidelines

Pitch 90 mm

Inner height 87 mm

Inner widths 100 - 800 mm

Bending radii 250 - 360 mm

Stegbauarten

Aluminum stay RMF......page 348

Frame stay, solid

- Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- Inside/outside: Threaded joint easy to release.

technik@kabelschlepp.de Technical support:

online-engineer.de

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were specially developed, optimised and tested for use in cable carriers can be found at traxline.de.

TKHD90 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR	Н	H_z	L_{B}	U_B
[mm]	[mm]	[mm]	[mm]	[mm]
250	680	860	965	510
310	800	980	1154	570
360	900	1080	1311	620

Inner heights

Inner widths

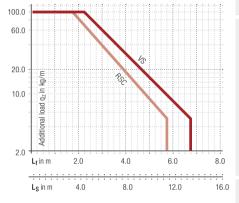
tsubaki-kabelschlepp.com/tkhd

Load diagram for unsupported length depending on the additional load.

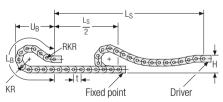
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 10 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Velocity up to 5 m/s



Acceleration up to 2.5 m/s2


Additional load up to 100 kg/m

Pre-tensioning of the cable carrier for unsupported arrangement, maximum H₂ dimension.

Decreased pre-tensioning of the cable carrier for RSC (rolling system) application, reduced Hz dimension.

Gliding arrangement

Glide shoes must be used for gliding applications. The gliding cable carrier must be guided in a channel. See p. 654.

Velocity up to 2 m/s

Acceleration up to 2.5 m/s2

Travel length up to 200 m

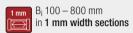
Additional load up to 100 kg/m

Key for abbreviations

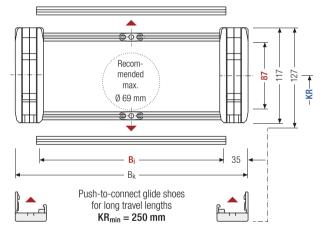
on page 38

TKHD90 RMF | Dimensions · Technical data

Aluminum stay RMF – frame stay solid


Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.

- Available customized in 1 mm grid.
- Inside/outside: Threaded joint easy to release.



Stay arrangement on each chain link (VS: fully-stayed)

Design guidelines from page 12

ij

The maximum cable diameter strongly depends on the bending radius and the desired cable type.
Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

Technical support: technik@kabelschlepp.de

online-engineer.de

h _i [mm]	h _G [mm]	h _{Gʻ} [mm]	B _i [mm]*	B _k [mm]		KR [mm]		q_k [kg/m]
87	117	127	100 – 800	B _i + 70	 250	 310	360	10.37 – 17.67

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

TKHD90 RMF | Inner distribution | TS0 · TS1

Divider systems

As a standard, the divider system is mounted on every 2nd chain link on the center bracket.

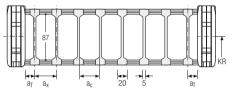
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (Version B).

Inner heights

Inner widths

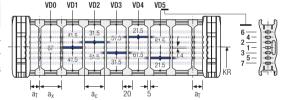
Increments

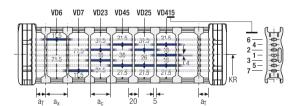


tsubaki-kabelschlepp.com/tkhd

Divider system TS0 without height separation

Vers.				a _{x Raster} [mm]	
Α	10	20	15	-	-
В	12.5	20	15	2.5	-


The dividers can be moved within the cross section (version A) or fixed (version B).

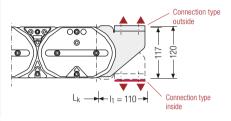


Divider system TS1 with continuous height separation

Vers.				a _{x Raster} [mm]	
Α	10	20	15	-	2
В	12.5	20	15	2.5	2

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example


Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$ (as seen from the driver).


TKHD90 | End connectors

End connectors - steel

The connection variants on the fixed point and on the driver an be combined and changed later on, if necessary.

Key for abbreviations on page 38

Design guidelines from page 12

Connection point

F - fixed point M - driver

Connection surface

- connection surface inside
- A connection surface outside

Connection type

- A threaded joint to outside (standard)
- I threaded joint to inside

MAI - MAA (o (o (o (o (o (o o) MII - MIA FII - FIA Fixed point FAI - FAA

Order example

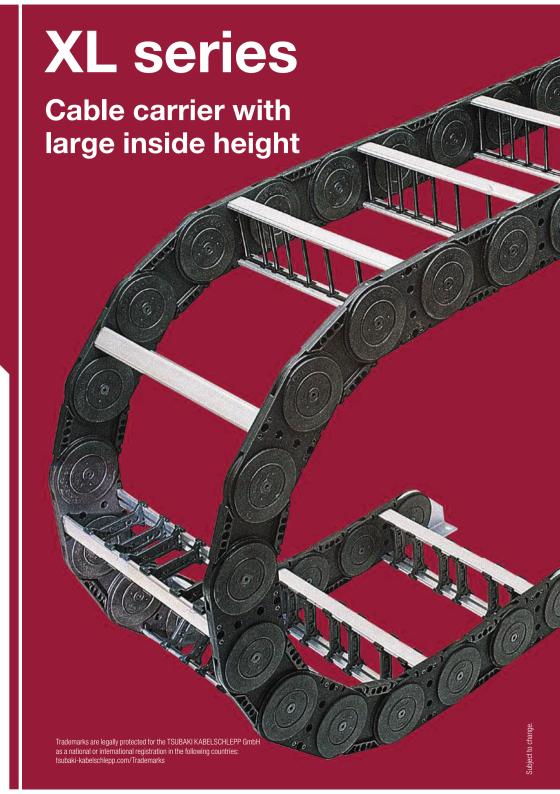
We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

online-engineer.de

technik@kabelschlepp.de

Technical support:

More product information online


Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

100 800 **◆**

tsubaki-kabelschlepp.com/tkhd

Inner heights

108

Inner widths

200 1000

- 1 Aluminum stavs available in 1 mm width sections
- 2 Aluminum stays with 4 screw-fixing points for extreme loads
- 3 Aluminum hole stays
- 4 Plastic rolling stays
- 5 Can be opened on the inside and the outside for installation of cables and hoses
- 6 Replaceable glide shoes
- 7 Sturdy end connectors made of steel
- 8 Flange connection

tsubaki-kabelschlepp.com/xl

Features

- Sizes/dimensions
- Low intrinsic weight
- Optimum force transmission via the large-surface stroke system (2 disc principle)
- Plastic side bands in combination with aluminum stays
- Versions with aluminum stays available in 1 mm width sections up to 1000 mm inner width

- Large selection of stay systems and separating options for cables
- Optionally with strain relief



Bolted stays for maximum stability even for large cable carrier widths

Replaceable glide shoes for long service life for gliding applications

Sturdy end connectors made of steel (different connection variants)

Many separation options for the cables

XL series | Overview

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	$\begin{matrix} B_k \\ \text{[mm]} \end{matrix}$	$\begin{array}{c} B_{i^-} \\ grid \\ [mm] \\ \hline \\ \hline \\ \hline \end{array}$	t [mm]	KR [mm]	Additional load ≤ [kg/m]	d _{max} [mm]	
XLC 1650												
		RM	108	140	200-1000	B _i + 68	1	165	250 – 550	65	86	
	r S	LG	110	140	200 – 1000	B _i + 68	1	165	250 – 550	65	88	
		RMR	108	140	200-1000	B _i + 68	1	165	250 – 550	65	84	

^{*} Further information on request.

XLT series

Also available as covered versions with covers system. More information can be found in chapter "XLT series" from page 510.

XL series | Overview

Unsuppor	rted arraı	ngement	Gliding	g arrange	ment		Inner dis	tribution		Installa	ation va	ariants	Page
$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a max ≤ [m/s²]	$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a_{max} ≤ [m/s²]	TS0	TS1	TS2	TS3	al hanging standing	lying on the side	rotating arrangement	Pa
								H		vertical or s	Ē	arra	
11.75	4	25	350	2	2-3	•	-	-	•	•	•	•	358
11.75	4	25	350	2	2-3	-	-	-	-	•	•	•	*
11.75	4	25	350	2	2 – 3	•	-	-	-	•	•	•	*

XL1650

Pitch 165 mm

Inner height 108 mm

Inner widths 200 - 1000 mm

Bending radii 250 - 550 mm

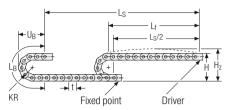
Stay variants

Aluminum stay RM page 358

Frame stay, solid

- Aluminum profile bars for heavy loads and maximum cable carrier widths. Double threaded joints on both sides "Heavy Duty".
- Inside/outside: Threaded joints easy to release.

Additional stay variants on request


Aluminum stay LG Optimum cable routing in the neutral bending line.

Aluminum stay RMR Gentle cable guiding with rollers.

XL1650 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
250	640	740	950	403
300	740	840	1107	453
350	840	940	1264	503
400	940	1040	1421	553
450	1040	1140	1578	603
500	1140	1240	1735	653
550	1240	1340	1892	703

Inner heights

Inner widths

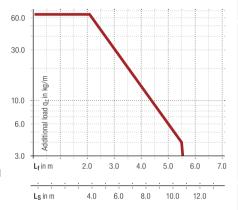
subaki-kabelschlepp.com/xl

Load diagram for unsupported length depending on the additional load.

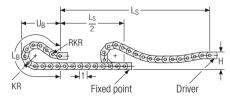
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 13 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Velocity up to 4 m/s



Acceleration up to 25 m/s²



Additional load up to 65 kg/m

Gliding arrangement

Velocity up to 2 m/s

Acceleration up to $2 - 3 \text{ m/s}^2$ We recommend the use of glide shoes for gliding applications.

The gliding cable carrier must be guided in a channel. See p. 654.

Travel length up to 350 m

Additional load up to 65 kg/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

XL series

Key for abbreviations

Design guidelines from page 38

on page 12

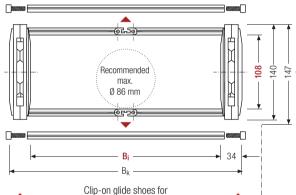
XLC1650 RM | Dimensions · Technical data

Aluminum stay RM -

Frame stay, solid

- Aluminum profile bars for heavy loads and maximum cable carrier widths. Double threaded joints on both sides "Heavy Duty".
- Available customized in 1 mm grid.
- Inside/outside: Threaded joints easy to release.

HEAVY DUTY


Stay arrangement on every 2nd chain link, standard (HS: half-staved)

Stay arrangement on each chain link (VS: fully-stayed)

B_i 200 - 1000 mm in 1 mm width sections

extended travel lengths

-KR

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t for odd number of chain links

technik@kabelschlepp.de Technical support:

online-engineer.de

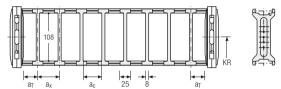
h _i	h _G	h _{Gʻ}	B i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
108	140	147	200 – 1000	B _i + 68	250 300 350 400 450 500 550	

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

XLC1650 RM | Inner distribution | TS0 · TS3

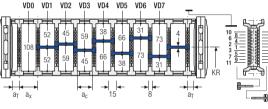

Divider systems

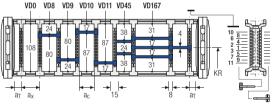
The divider system is mounted on each crossbar as a standard – on every 2nd chain link for stay mounting (HS). As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

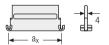
Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	6	25	17	-

The dividers can be moved in the cross section.

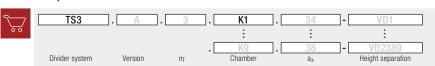



Divider system TS3 with height separation consisting of plastic partitions


Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	1	16 / 42*	8	2

* For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

			a _x (center (distanc	e of div	iders) [r	nm]			
			a _c (no	ominal v	vidth of i	inner ch	amber)	[mm]			
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 5$ mm). Twin dividers are also suitable for retrofitting in the partition system.

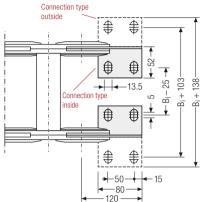
Order example

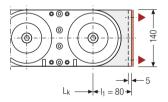
Please state the designation of the divider system (TS0, TS3), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

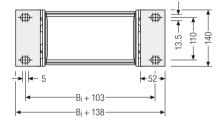
Inner heights

Inner widths

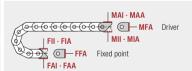
Increments


:subaki-kabelschlepp.com/xl


XL1650 | End connectors


End connectors - steel

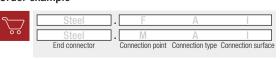
End connectors made of steel. The connection variants on the fixed point and on the driver an be combined and changed later on, if necessary.



Assembly options

Connection point

Connection surface F - fixed point connection surface inside M - driver A - connection surface outside


Connection type

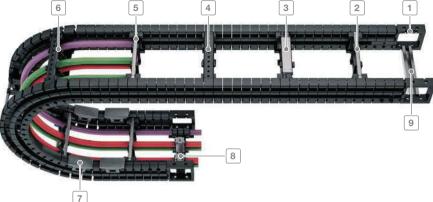
A – threaded joint outside (standard)

I – threaded joint inside

F – flange connection

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.


QUANTUM® series

Light, extremely quiet and low-vibration for high speeds and accelerations

subaki-kabelschlepp.com/

- 1 Universal end connectors (UMB)
- 2 Aluminum stays available in 1 mm width sections
- 3 Aluminum stays in reinforced design
- 4 | Plastic stays available in 8 or 16 mm width sections
- 5 Can be opened quickly on the inside and the outside for cable laying
- 6 Fixable dividers
- 7 Replaceable glide shoes
- 8 Strain relief combs
- 9 C-rail for strain relief elements

Virtually no polygon effect

QUANTUM® Cable carrier Low-vibration with polygon operation effect

Features

- Cleanroom compatible: Cleanroom class 1 possible - no links, no link wear
- Extremely quiet, 31 db (A)*
- Extremely light
- For high accelerations up to 300 m/s²
- For high operating speeds up to 40 m/s
- Extremely long service life: ≥ 25 million motion cycles

- TÜV type tested as per 2PfG 1036/10.97
- Large selection of stay systems and separating options for cables

* Tested: Q060.100.100 by TÜV Rheinland. The sound pressure level for the measured area was measured at a distance of 0.5 m for smooth and jerky movements.

Ideal for highly dynamic applications

3D movements: the driver connection can be moved laterally and can be rotated by up to ± 30°

Side bands made from special plastic and steel cables in the support floor for an extremely long service life

Key for abbreviations on page 12

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	B _i ₋ grid [mm] x mm	t [mm]	KR [mm]	Additional load ≤ [kg/m]	d _{max} [mm]	
Q040						\longrightarrow	رككا		7	Sa		
QU4U	<u></u>	RE	28	40	28 – 284	B _i + 40	8	15	60 – 180	2.5	22	
Q060	: :								:			
	Image: section of the content of the	RS	38	60	38-500	B _i + 52	1	20	100 – 300	5	30	
11 11	Image: section of the content of the	RE	42	60	68 – 276	B _i + 52	8	20	100 – 300	5	33	
Q080							:	:				
	口	RS	58	80	50-600	B _i + 72	1	25	170 – 500	8	46	
	Image: Control of the	RV	58	80	50-600	B _i + 72	1	25	170 – 500	8	46	
	IIII	RE	58	80	58 – 570	B _i + 72	16	25	170 – 500	8	46	
Q100			:				:	:	:			
	\Box	RS	72	98	70 – 600	B _i + 82	1	30	180 – 600	12	57	
		RV	72	98	70 – 600	B _i + 82	1	30	180 – 600	12	57	
		RE	72	98	74 – 570	B _i + 82	16	30	180 – 600	12	57	

Cleanroom compatible and long service life

Continuous side bands are used. In contrast to conventional hole-and-bolt connections, hardly any wear occurs (link abrasion), which makes QUANTUM® ideal for use in cleanrooms.

Extremely long service life through

- No link abrasion due to absence of hole-and-bolt connections
- Continuous side bands made from special plastic with integrated steel cables

Ideal for highly dynamic applications - extruded side bands

The QUANTUM® runs extremely quietly and with low vibrations. The absence of links and the very small pitch means that the so-called polygon effect is reduced to a minimum. Due to the very quiet running, the QUANTUM® cable carrier system is ideal for applications with lowvibration linear drives.

NANTUM series

Inner heights

|--|

Inner widths

28
600
←

tsubaki-kabelschlepp.com/ quantum

Unsuppo	rted arraı	ngement	Glidin	g arrange	ment		Inner dis	tribution			ation va		Page
	v max ≤ [m/s]	a max ≤ [m/s²]	$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a_{max} ≤ [m/s ²]	TS0	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	Pa
								H		vertica 0	ΪŹ	arra	
3,2	40	300	100	20	7	•	•	•	-	•	•	-	368
5	30	160	150	15	7	•	•	•	•	•	•	-	374
5	30	160	150	15	7	•	•	•	•	•	•	-	378
6.4	25	100	180	12	6	•	•	•	•	•	•	-	384
6.4	25	100	180	12	6	•	•	•	•	•	•	-	386
6.4	25	100	180	12	6	•	•	•	•	•	•	-	390
:										:			
7.8	20	70	200	10	5	•	•	•	•	•	•	-	396
7.8	20	70	200	10	5	•	•	•	•	•	•	-	398
7.8	20	70	200	10	5	•	•	•	•	•	•	-	402

QUANTUM® series | Overview

Key for abbreviations on page 12

Design guidelines from page 38

technik@kabelschlepp.de Technical support:

online-engineer.de

040

Inner widths 28 – 284 mm

Stay variants

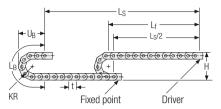
Plastic stay RE page 368

Frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Q040 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR	Н	LB	U_B
[mm]	[mm]	[mm]	[mm]
60	175	369	178
75	205	416	193
90	235	463	208
110	275	526	228
150	355	651	268
180	415	746	298

Inner heights

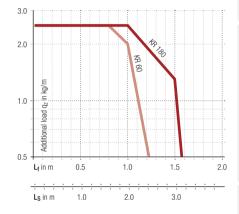
Inner widths

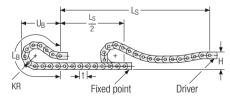
tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 0.8$ kg/m. For other inner widths, the maximum additional load changes.


Velocity up to 40 m/s



Additional load up to 2.5 kg/m

Gliding arrangement

Velocity

up to 20 m/s

Acceleration up to 15 m/s2

See p. 654.

Glide shoes have to be used for gliding applications. The gliding cable carrier has to be routed in a channel.

Travel length up to 100 m

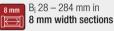
Additional load up to 2.5 kg/m

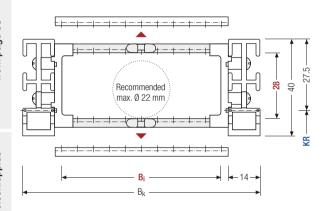
Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Q040 RE | Dimensions · Technical data

Plastic stay RE – screw-in frame stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Available customized in 8 mm sections.
- Outside/inside: release by rotating 90°.





Stays on every 6th section, standard (HS: half-stayed)

Stays on every 3rd section (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the

desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

h _i	h _G	B _i	B_k	KR	q_k
[mm]	[mm]	[mm]*	[mm]	[mm]	[kg/m]
28	40	28 – 284	B _i + 40	60 75 90 110 150 180	0.63 - 0.98

^{*} in 8 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Q040 RE | Inner distribution | TS0 · TS1 · TS2

Divider systems

The divider system is mounted on each crossbar as a standard – on every 6th section for stay mounting (HS).

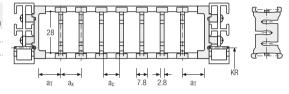
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (Version B). The groove in the frame stay faces outwards.

Inner heights

Inner widths

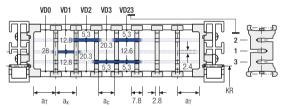
Increments


8 mm

:subaki-kabelschlepp.com/

Divider system TS0 without height separation

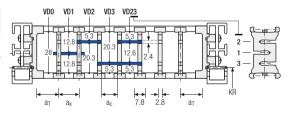
Vers.				a _{x grid} [mm]	n _T min
Α	8	8	5.2	-	-
В	14	8	5.2	8	-


The dividers are movable within the cross section (version A) or fixed (version B).

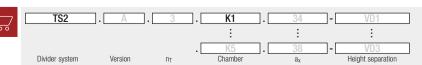
Divider system TS1 with continuous height separation

Ve	rs.				a _{x grid} [mm]	
1	A	8	8	5.2	_	2
- 1	В	14	8	5.2	8	2

The dividers are movable within the cross section (version A) or fixed (version B).

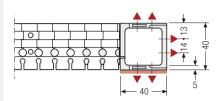


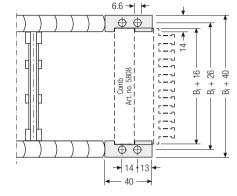
Divider system TS2 with partial height separation


Vers.				a _{x grid} [mm]	
В	12	8*/ 24	5.2*/ 21.2	8	2

* for VRO

With grid distribution (8 mm grid). The dividers are fixed by the height separation, the complete divider system is fixed (version B).


Order example



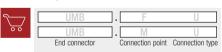
Q040 | End connectors

Universal end connectors UMB – plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

▲ Assembly options

Recommended tightening torque: 5 Nm for screws M5 - 8.8


Connection point

F – fixed pointM – driver

Connection type

U – universal end connector

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

Inner widths

Increments

tsubaki-kabelschlepp.com/ quantum

Q060

Pitch 20 mm

Inner heights 38 – 42 mm

Inner widths 38 – 500 mm

Bending radii 100 – 300 mm

Stay variants

Aluminum stay RSpage 374

Standard frame stay "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

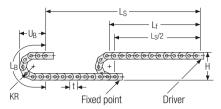
Plastic stay RE page 378

Frame screw-in stav

- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Q060 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	L _B [mm]	U_B [mm]
100	288	554	264
120	328	617	284
150	388	711	314
190	468	837	354
250	588	1025	414
300	688	1182	464

Inner heights

38

Inner widths

38 500

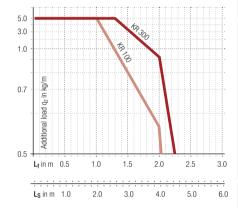
tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

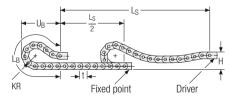
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 1.5$ kg/m. For other inner widths, the maximum additional load changes.

Velocity up to 30 m/s



Acceleration up to 160 m/s2



Additional load up to 5 kg/m

Gliding arrangement

Velocity

up to 15 m/s

Acceleration up to 7 m/s2

Glide shoes have to be used for gliding applications.

The gliding cable carrier has to be routed in a channel. See p. 654.

Travel length up to 150 m

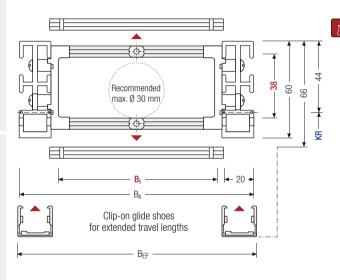
Additional load up to 5 kg/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Q060 RS | Dimensions · Technical data

Aluminum stay RS standard frame stay

- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 6th section, standard (HS: half-stayed)

Stays on every 3rd section (VS: fully-stayed)

 $B_i 38 - 500 \text{ mm in}$ 1 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
38	60	66	38 – 500	B _i + 52	B _i + 56	100 120 150 190 250 300	1.25 – 2.40

^{*} in 1 mm width sections

Order example

	Q060 Type	. 200 B _i [mm]	RS Stay variant	150 - KR [mm]	1540 L _k [mm]	HS Stay arrangement
0	and a self-recommended and a self-recommended	a la alla Camadialia				

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Divider systems

The divider system is mounted on each crossbar as a standard – on every 6th section for stay mounting (HS).

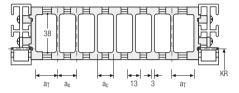
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping onto a socket (available as an accessory).

The socket additionally acts as a spacer between the dividers and is available in 1 mm sections between 3-50 mm (Version B).

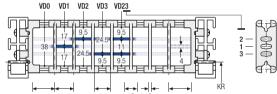
Inner heights

Inner widths

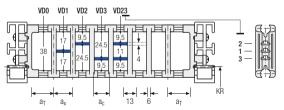

Increments

Divider system TS0 without height separation

Vers.	a _{T min} [mm]		a _{c min} [mm]	n _{T min}
Α	13.5	13	10	_


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation


The dividers can be moved in the cross section.

Divider system TS2 with partial height separation

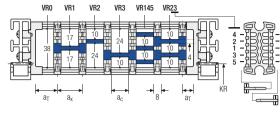
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	13.5	13	7	2

With grid distribution (1 mm grid). The dividers are attached by the height separation; the grid can be moved in the cross section.

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at **traxline.de**

on page 12

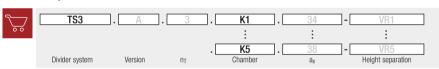

Q060 RS | Inner distribution | TS3

Divider system TS3 with height separation consisting of plastic partitions

Vers.		a _{x min} [mm]		n _{T min}
Α	11	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

a_x (center distance of dividers) [mm]											
a _c (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** (S_T = 4 mm). Twin dividers are also suitable for retrofitting in the partition system.

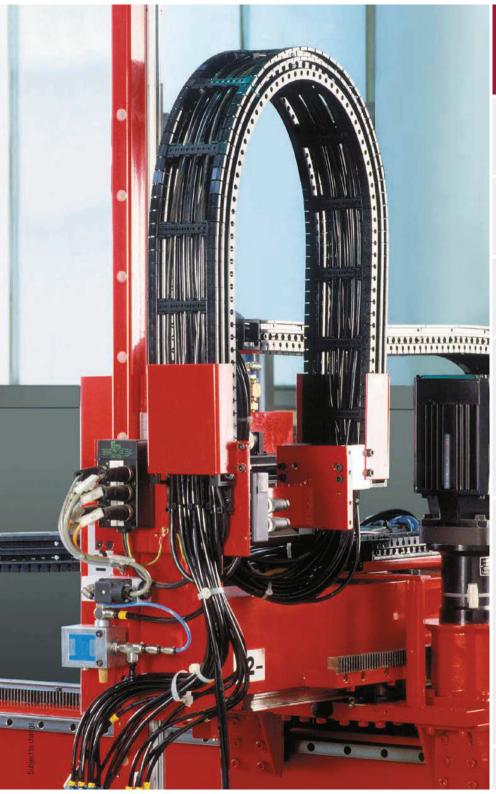
Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

When using divider systems with height separation (TS1 – TS3), please additionally state the positions (e.g. VD23) as seen from the left driver belt. You are welcome to add a sketch to your order.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support


Configure your custom cable carrier here: onlineengineer.de

38 500 **←**

Increments

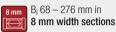
tsubaki-kabelschlepp.com/ quantum

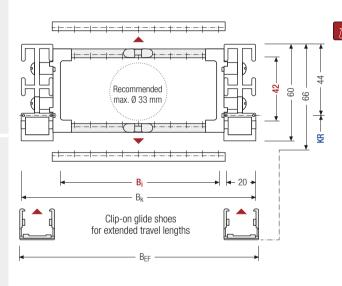
Q060 RE | Dimensions · Technical data

Plastic stay RE –

frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Available customized in 8 mm sections.
- Outside/inside: release by rotating 90°.





Stays on every 6th section, standard (HS: half-stayed)

Stays on every 3rd section (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
42	60	66	68 – 276	B _i + 52	B _i + 56	100 120 150 190 250 300	1.16 – 1.54

^{*} in 8 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Divider systems

The divider system is mounted on each crossbar as a standard – on every 6^{th} section for stay mounting (HS).

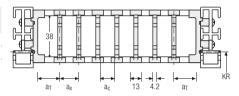
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (Version B). The groove in the frame stay faces outwards.

Inner heights

Inner widths

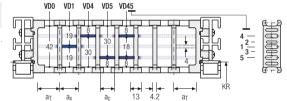
Increments



:subaki-kabelschlepp.com/

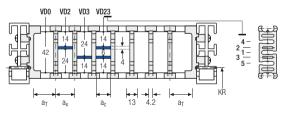
Divider system TS0 without height separation

Vers.	a _{T min}	a _{x min}	a _{c min}	a _{x grid}	nT
	[mm]	[mm]	[mm]	[mm]	min
Α	14	13	8.8	_	_
В	14	16	11.8	8	-


The dividers are movable within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	
Α	14	13	8.8	-	2


The dividers can be moved in the cross section.

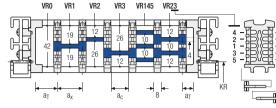
Divider system TS2 with partial height separation

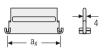
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	14	13	8.8	2
В	14	16	11.8	2

With grid distribution (8 mm grid). The dividers are attached by the height separation; the grid can be moved in the cross section.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source — with a warranty certificate on request! Learn more at **tsubaki-kabelschlepp.com/totaltrax**

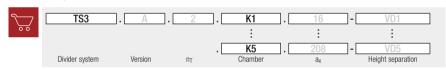

Q060 RE | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.		[mm]	[mm]	
Α	11	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

a _x (center distance of dividers) [mm]										
a _c (nominal width of inner chamber) [mm]										
18	23	28	32	33	38	43	48	58	64	68
10	15	20	24	25	30	35	40	50	56	60
80	88	96	112	128	144	160	176	192	208	
72	80	88	104	120	136	152	168	184	200	
	10 80	10 15 80 88	a _c (nor a _c) (a _c (nominal w 18 23 28 32 10 15 20 24 80 88 96 112	a _c (nominal width of 18 23 28 32 33 10 15 20 24 25 80 88 96 112 128	a _c (nominal width of inner cf 18	a _c (nominal width of inner chamber) 18 23 28 32 33 38 43 10 15 20 24 25 30 35 80 88 96 112 128 144 160	a _c (nominal width of inner chamber) [mm] 18 23 28 32 33 38 43 48 10 15 20 24 25 30 35 40 80 88 96 112 128 144 160 176	a _c (nominal width of inner chamber) [mm] 18 23 28 32 33 38 43 48 58 10 15 20 24 25 30 35 40 50 80 88 96 112 128 144 160 176 192	a _c (nominal width of inner chamber) [mm] 18 23 28 32 33 38 43 48 58 64 10 15 20 24 25 30 35 40 50 56 80 88 96 112 128 144 160 176 192 208

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** (S_T = 4 mm). Twin dividers are also suitable for retrofitting in the partition system.

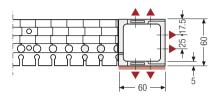
Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$.

When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) as seen from the left driver belt. You are welcome to add a sketch to your order.

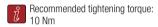
TOTALTRAX® complete systems

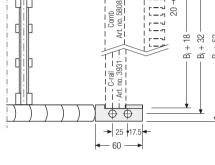
Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

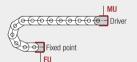

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Q060 | End connectors


Universal end connectors UMB - plastic (standard)


The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.



6.6 → Comb no. 5808 20 32 B_i + 1 + E C-rail no. 39 ▶ 25 •17.5

▲ Assembly options

Connection point

F – fixed point M – driver

Connection type

U - universal end connector

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

tsubaki-kabelschlepp.com/

Key for abbreviations on page 12

Design guidelines

from page 38

Pitch 20 mm

Inner height 58 mm

Inner widths 50 - 600 mm

Bending radii 170 – 500 mm

Stay variants

Aluminum stay RSpage 384

Standard frame stay "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

Aluminum stav RV.....page 386

Frame stay, reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Outside/inside: release by rotating 90°.

Plastic stay RE page 390

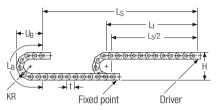
Frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

Technical support:

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Q080 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	L _B [mm]	U_B [mm]
170	457	834	379
200	517	928	409
250	617	1085	459
320	757	1305	529
420	957	1619	629
500	1117	1870	709

Inner heights

Inner widths

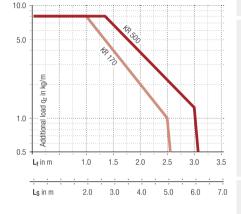
tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load.

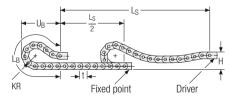
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.5$ kg/m. For other inner widths, the maximum additional load changes.

Velocity up to 25 m/s



Acceleration up to 100 m/s2



Additional load up to 8 kg/m

Gliding arrangement

Velocity up to 12 m/s

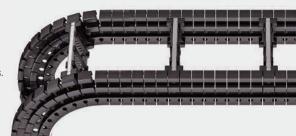
Acceleration up to 6 m/s2

Glide shoes have to be used for gliding applications.

The gliding cable carrier has to be routed in a channel. See p. 654.

Additional load up to 8 kg/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de


Q080 RS | Dimensions · Technical data

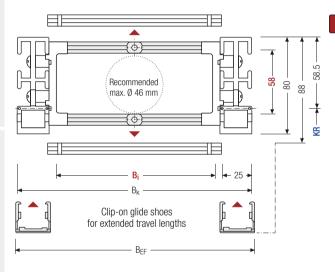
Key for abbreviations on page 12

standard frame stay

Aluminum stay RS -

- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.

Stays on every 8th section, standard (HS: half-stayed)


Stays on every 4th section (VS: fully-stayed)

 $B_i 50 - 600 \text{ mm in}$ 1 mm width sections

Design guidelines from page 38

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

> Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

		Γ	
		L	

hį	h _G	h _{Gʻ}	B _i	B _k
[mm]	[mm]	[mm]	[mm]*	[mn
58	80	88	50 - 600	B _i +

		В	EF		
		[m	ım]		
į	R:	+	79	5	

			KF	2
		[r	nn	n]
200	-	250	1	32

 q_k [kg/m] 420 500 1.90 - 2.25

* in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

online-engineer.de

Subject to change.

Q080 RS | Inner distribution | TS0 · TS1 · TS2

Divider systems

The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

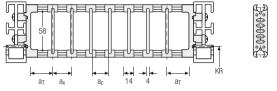
For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping onto a socket (available as an accessory).

This socket additionally acts as a spacer between the dividers and is available in a 1 mm grid between 3 - 50 mm, as well as 16.5 and 21.5 mm (Version B).

Inner heights

Inner widths

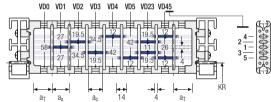
Increments



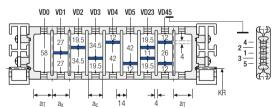
:subaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	11	14	10	_


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation


The dividers can be moved in the cross section.

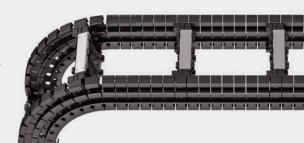
Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	11	14	10	2

With grid distribution (1 mm grid). The dividers are attached by the height separation; the grid can be moved in the cross section.

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

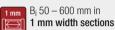

Key for abbreviations

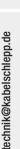
on page 12

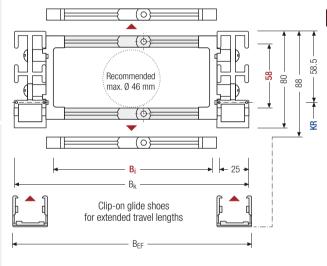
Q080 RV | Dimensions · Technical data

Aluminum stay RV -Frame stay reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.




Stays on every 8th section, standard (HS: half-stayed)


Stays on every 4th section (VS: fully-stayed)

Design guidelines from page 38

Technical support:

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

> Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

500

 q_k [kg/m]

2.10 - 2.90

h _i h _G h _{G'} B _i B _k B _{EF} KR	
[mm] [mm] [mm]* [mm] [mm] [mm]	
58 80 88 50 – 600 B _i + 72 B _i + 79.5 170 200 250 320	420

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

online-engineer.de

Divider systems

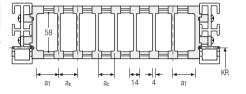
The divider system is mounted on each crossbar as a standard – on every 8^{th} section for stay mounting (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

Inner heights

Inner widths

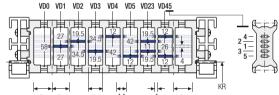
Increments



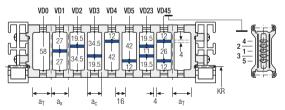
:subaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	11	14	10	2


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation


The dividers can be moved in the cross section.

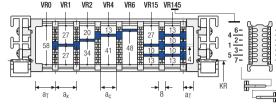
Divider system TS2 with partial height separation

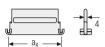
Ve	ers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
	Α	12	20	16	2

With grid distribution (1 mm grid). The dividers are attached by the height separation; the grid can be moved in the cross section.

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at **traxline.de**


Q080 RV | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]		a _{c min} [mm]	n _{T min}
Α	8	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.

Aluminum partitions with 1 mm increments with $a_x > 42$ mm are also available.

a_x (center distance of dividers) [mm]													
$a_{\mathbb{C}}$ (nominal width of inner chamber) [mm]													
16	18	23	28	32	33	38	43	48	58	64	68		
8	10	15	20	24	25	30	35	40	50	56	60		
78	80	88	96	112	128	144	160	176	192	208			
70	72	80	88	104	120	136	152	168	184	200			

When using **plastic partitions with a_x > 112 mm**, we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system.

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section $[n_T]$. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_X]$.

When using divider systems with height separation (TS1 – TS3), please additionally state the positions (e.g. VD23) as seen from the left driver belt. You are welcome to add a sketch to your order.

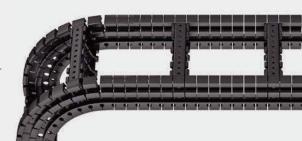
More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

Incre-ments

tsubaki-kabelschlepp.com/ quantum

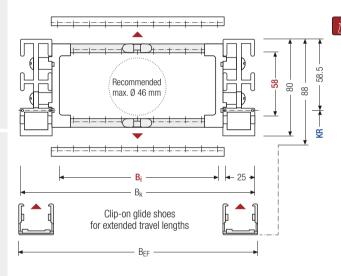


Q080 RE | Dimensions · Technical data

Plastic stay RE -

frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Available customized in 16 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 8th section, standard (HS: half-stayed)

Stays on every 4th section (VS: fully-stayed)

 $B_i 58 - 570 \text{ mm in}$ 16 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
58	80	88	58 – 570	B _i + 72	B _i + 79.5	170 200 250 320 420 500	

^{*} in 16 mm width sections

Order example

Type B _i [mm] Stay variant KR [mm] L _k [mm] Stay arrangement
--

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Q080 RE | Inner distribution | TS0 · TS1 · TS2

Divider systems

The divider system is mounted on each crossbar as a standard – on every 8^{th} section for stay mounting (HS).

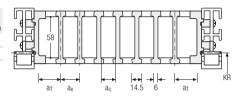
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (Version B). The groove in the frame stay faces outwards.

Inner heights

Inner widths

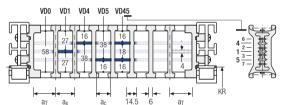
Increments



:subaki-kabelschlepp.com/

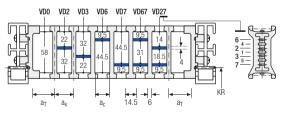
Divider system TS0 without height separation

Vers.				a _{x grid} [mm]	n _T min
Α	12	14.5	8.5	_	-
В	13	16	10	16	-


The dividers are movable within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.				a _{x grid} [mm]	
Α	12	14.5	8.5	-	2
В	13	16	10	16	2


The dividers are movable within the cross section (version A) or fixed (version B).

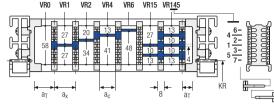
Divider system TS2 with partial height separation

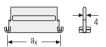
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	12	16	10	2
В	13	16	10	2

With grid distribution (8 mm grid). The dividers are attached by the height separation; the grid can be moved in the cross section.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source — with a warranty certificate on request! Learn more at **tsubaki-kabelschlepp.com/totaltrax**

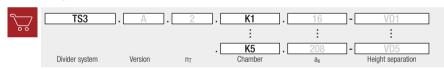

Q080 RE | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	8	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

	a _x (center distance of dividers) [mm]										
	a _c (nominal width of inner chamber) [mm]										
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** (S_T = 4 mm). Twin dividers are also suitable for retrofitting in the partition system.

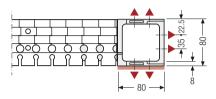
Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

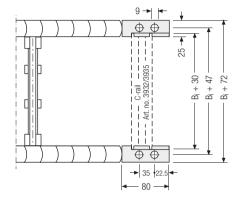
When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) as seen from the left driver belt. You are welcome to add a sketch to your order.

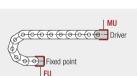
TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers


Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de


Universal end connectors UMB - plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

▲ Assembly options

Connection point

F – fixed point M – driver

Connection type

U - universal end connector

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

tsubaki-kabelschlepp.com/

Design guidelines

from page 38

Pitch 30 mm

Inner height 72 mm

Inner widths 70 – 600 mm

Bending radii 180 – 600 mm

Stay variants

Aluminum stay RSpage 396

Standard frame stay "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

Aluminum stav RV page 398

Frame stay, reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Outside/inside: release by rotating 90°.

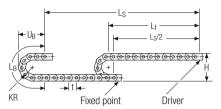
Plastic stay RE page 402

Frame screw-in stay

- Plastic profile bars for light and medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Q100 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	L _B [mm]	U_B [mm]
180	503	926	432
250	643	1145	502
300	743	1302	552
370	883	1522	622
460	1063	1805	712
600	1343	2244	852

heights

Inner

Inner widths

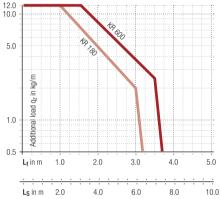
tsubaki-kabelschlepp.com/

Load diagram for unsupported length depending on the additional load. Sagging of the cable carrier is technically permitted

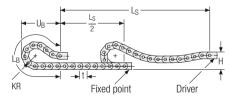
for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 3.25$ kg/m. For other inner widths, the maximum additional load changes.

Velocity up to 20 m/s



Acceleration up to 70 m/s2



Additional load up to 12 kg/m

Gliding arrangement

Velocity up to 10 m/s

Acceleration up to 5 m/s2

Glide shoes have to be used for gliding applications.

The gliding cable carrier has to be routed in a channel. See p. 654.

Travel length up to 200 m

Additional load up to 12 kg/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

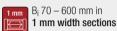
Key for abbreviations

on page 12

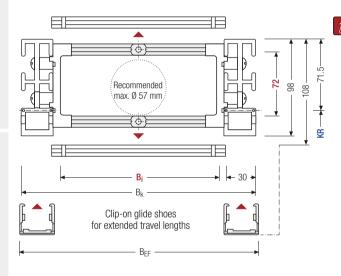
Q100 RS | Dimensions · Technical data

Aluminum stay RS standard frame stay

- Extremely quick to open and close.
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.



Stays on every 8th section, standard (HS: half-stayed)



Stays on every 4th section (VS: fully-stayed)

Design guidelines from page 38

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

72 98 108 70 – 600 B _i + 82 B _i + 89.5 180	h _i [mm]	h _G	h _{Gʻ} [mm]	B _i [mm]*	B_k [mm]	B _{EF}	
							180

hį	h _G	h _{Gʻ}	Bi	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
72	98	108	70 – 600	B _i + 82	B _i + 89.5	180 250 300 370 460 600	2.6 - 3.4

in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

online-engineer.de

Divider systems

Vers.

section.

a_{T min}

[mm]

7.5

The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

Divider system TS0 without height separation

[mm]

10

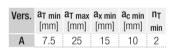
a_{c min} n_{T min}

For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping onto a socket (available as an accessory).

The socket additionally acts as a spacer between the dividers and is available in 1 mm sections between 3-50 mm (Version B).

Inner heights

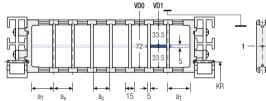
Inner widths



Increments

:subaki-kabelschlepp.com/

Divider system TS1 with continuous height separation


a_{x min}

[mm]

15

The dividers can be moved in the cross

The dividers can be moved in the cross section.

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n-1.

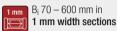
When using divider systems with height separation (TS1), please additionally state the positions (e.g. VD1) as seen from the left driver belt. You are welcome to add a sketch to your order.

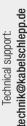
Q100 RV | Dimensions · Technical data

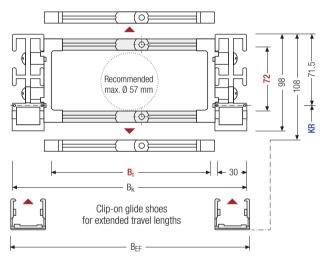
Key for abbreviations on page 12

Aluminum stay RV -Frame stay reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.




Stays on every 8th section, standard (HS: half-stayed)



Stays on every 4th section (VS: fully-stayed)

Design guidelines from page 38

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

> Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
72	98	108	70 – 600	B _i + 82	B _i + 89.5	180 250 300 370 460 600	

^{*} in 1 mm width sections

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

online-engineer.de

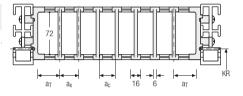
Divider systems

The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS). As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

Inner heights

Inner widths

Increments



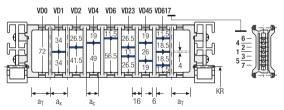
:subaki-kabelschlepp.com/

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	13	16	10	2

The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation


The dividers can be moved in the cross section.

Divider system TS2 with partial height separation

Ve	ers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
	Α	13	20	14	2

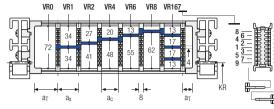
With grid distribution (1 mm grid). The dividers are attached by the height separation; the grid can be moved in the cross section.

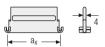
TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Key for abbreviations

on page 12

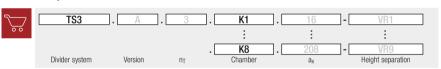

Q100 RV | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16/42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

			a _x (c	enter o	iistanc	e ot aiv	iders)	[mm]			
			a _c (noi	minal w	idth of	inner ch	namber)	[mm] (
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a twin divider ($S_T = 4 \text{ mm}$). Twin dividers are also suitable for retrofitting in the partition system.

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

When using divider systems with height separation (TS1 – TS3), please additionally state the positions (e.g. VD23) as seen from the left driver belt. You are welcome to add a sketch to your order.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

Inner widths

Incre-ments

tsubaki-kabelschlepp.com/ quantum

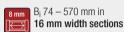
on page 12

Plastic stay RE - frame

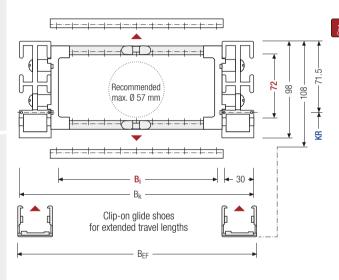
screw-in stay

Plastic profile bars for light and medium loads. Assert bly without screws.

- Available customized in 16 mm sections.
- Outside/inside: release by rotating 90°.



Stays on every 8th section, standard (HS: half-stayed)



Stays on every 4th section (VS: fully-stayed)

Design guidelines from page 38

technik@kabelschlepp.de Technical support:

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t

hi	h _G	hgʻ
[mm]	[mm]	[mm]
72	98	108

3_i m]*		B _k [mm]
4		
570		D. 1 92

Order example

180

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

online-engineer.de

^{*} in 16 mm width sections

Divider systems

The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

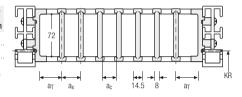
For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (Version B).

The groove in the frame stay faces outwards.

Inner heights

Inner widths

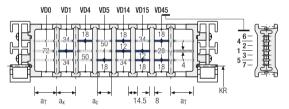
Increments



:subaki-kabelschlepp.com/

Divider system TS0 without height separation

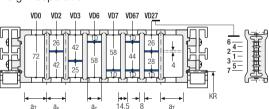
Vers.				a _{x grid} [mm]	
Α	12	14.5	6.5	-	-
В	13	16	8	16	-


The dividers are movable within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	a _{x grid} [mm]	n _T mir
Α	12	14.5	6.5	-	2
В	13	16	8	16	2

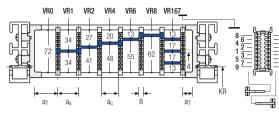
The dividers are movable within the cross section (version A) or fixed (version B).

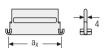


Divider system TS2 with partial height separation

Vers.	[mm]	[mm]	[mm]		n _T min
Α	12	14.5*/ 20	6.5*/ 12	-	2
В	13	16*/ 32	8*/ 24	16	2

* for VRO

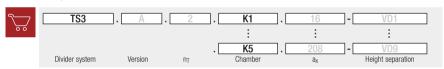

Q100 RE | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	4	16/42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions with 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

				a _x (c	enter c	iistanc	e of div	iders)	[mm]			
a _c (nominal width of inner chamber) [mm]												
	16	18	23	28	32	33	38	43	48	58	64	68
	8	10	15	20	24	25	30	35	40	50	56	60
	78	80	88	96	112	128	144	160	176	192	208	
	70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** (S_T = 4 mm). Twin dividers are also suitable for retrofitting in the partition system.

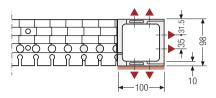
Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$.

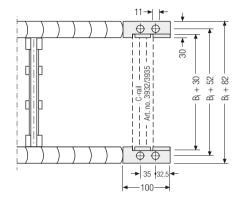
When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) as seen from the left driver belt. You are welcome to add a sketch to your order.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax


TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

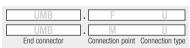

Q100 | End connectors

Universal end connectors UMB - plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

▲ Assembly options

F – fixed point M – driver


Connection type

U - universal end connector

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here:

onlineengineer.de

TKR series

Extremely quiet and low-vibration for highly dynamic applications*

tsubaki-kabelschlepp.com/tkr

- 2 5 3
- 1 Variable connection for quick assembly
- 2 Easy and quick to open
- 3 Extremely quiet and low-vibration operation
- 4 Can be opened at any position
- 5 Fixable dividers
- 6 Many separation options for the cables
- 7 Chain link and joint connection with captive connection

Features

- Long service life
- Ideal for highly dynamic applications
- High side stability
- Cleanroom compatible
- Modular design allows easy shortening and extending

Ideal for highly dynamic applications

UMB end connector to the connection from the face side, from the top or from the bottom

Molded, captive connecting elements

Key for abbreviations on page 12

Design guidelines from page 38

technik@kabelschlepp.de Technical support:

online-engineer.de

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	B _{i-} grid [mm]	t [mm]	KR [mm]	Addi- tional load ≤ [kg/m]	d _{max} [mm]	
TKR0150	obe					\longleftrightarrow	X mm		×			
		030	22	27.5	20-60	34 – 74	-	15	40 – 75	2	17.5	
TKR0200		030	28	37	40 – 120	56 – 136	-	20	55 – 150	2.5	22	
TKR0260		030	40	54	50 – 200	76 – 226	-	26	75 – 150	8	32	
TKR0280	<i>1</i>	030	52	66	50 – 200	80 – 130	-	28	75 – 200	10	41	

Cleanroom compatible and long service life

The movable connectors are directly molded on the chain links. In contrast to conventional bore-hole bolt connections, hardly any wear occurs (link abrasion), which makes the TKR type excellent for use in clean

The special design of the connecting elements additionally increases the service life of the system.

Ideal for highly dynamic applications

The TKR features extremely quiet and low-vibration operation. The so-called polygon effect is reduced to a minimum.

Ideal areas of application are in particular in handling and assembly systems, robots, metrology devices, pick-and-place machines, printing and textile machines. Due to the very quiet running, the low-vibration TKR types are ideal for applications with linear drives.

TKR series | Overview

Unsuppor	rted arraı	ngement	Glidin	g arrange	ment		Inner dis	tribution			ation va		Page
$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v _{max} ≤ [m/s]	a max ≤ [m/s²]		v _{max} ≤ [m/s]	a max ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	ng on the side	rotating arrangement	Pa
			←					H		vertica 0	Ξ	arra	
1.75	5	200*	-	-	_	•	•	-	-	•	-	-	412
2.75	5	200*	-	-	-	•	•	-	-	•	-	-	418
3.9	5	200*	-	-	-	•	•	-	•	•	-	-	424
4.9	5	200*	-	-	-	•	•	-	•	•	-	-	430

^{*} For values > 20 m/s², please contact us, we are happy to advise you.

Technical manual

Do you require additional information on the TKR type? Our technical manual at **tsubaki-kabelschlepp.com/download** provides all information for configuring your cable carrier.

Inner widths

tsubaki-kabelschlepp.com/tkr

TKR0150

Inner widths 20 - 60 mm

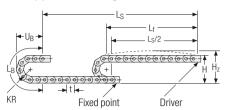
Stay variants

Design 030 page 412

- Frame with externally detachable crossbars Low-vibration plastic frame with particularly long service life thanks to molded chain links.
- Outside: Swivable and detachable.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

TKR0150 | Installation dim. | Unsupported

Unsupported arrangement

KR	Н	H_z	L_{B}	U_B
[mm]	[mm]	[mm]	[mm]	[mm]
40	130	140	156	70
50	150	160	187	80
75	200	210	266	105

Inner heights

Inner widths

tsubaki-kabelschlepp.com/tkr

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 0.3 \text{ kg/m}$ at B_i 20 mm. For other inner widths, the maximum additional load changes.

Velocity up to 5 m/s

Travel length

up to 1.75 m

Acceleration up to 200 m/s2* 3.0

Additional load up to 2.0 kg/m

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: online-engineer.de

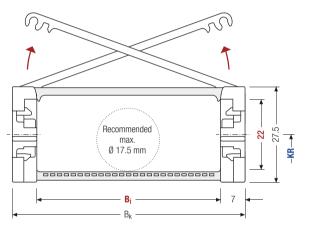
^{2.0} 1.0 additional load qz in kg/m 0.5 0.1 L_f in m 0.2 0.4 0.6 0.8 1.0 1.2 Ls in m 0.4 0.8 1.2 1.6 2.0

^{*} For values > 20 m/s2, please contact us, we are happy to advise you!

Stay variant 030 – with outside opening and detachable crossbars

- Low-vibration plastic frame with particularly long service life thanks to molded chain links.
- Swivable and detachable on one side in any position.
- Outside: Swiyable and detachable.

Stay arrangement on each chain link (VS: fully-stayed)



B_i 20 – 60 mm

Design guidelines from page 38

technik@kabelschlepp.de

Technical support:

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

	<u>Janneer.</u>	figurator
1	nIIne-er	able Carrier Cont
ĺ	3	

Φ

h _i	h _G		Bi		B_k		KR		q_k
[mm]	[mm]		[mm]		[mm]		[mm]		[kg/m]
22	27.5	20	40	60	B _i + 14	40	50	75	0.3 - 0.5

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

tsubaki-kabelschlepp.com/tkr

TKR0150.030 | Inner distribution | TS0 · TS1

Divider systems

As standard, the divider system is mounted on every 2nd chain link

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

Divider system TS0 without height separation

[mm] min

The dividers are easily attached to the stay for applications with transverse accelerations and for applications laying on the side by simply turning them.

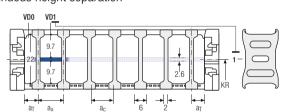
The arresting cams click into place in the locking grids in the crossbars (Version B).

Inner heights

Inner

widths

Divider system TS1 with continuous height separation


Vers. at min ax min ac min ax grid

6

4

[mm] [mm] [mm]

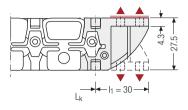
Α

Order example

Please state the designation of the divider system (TS0, TS1 \dots), version and number of dividers per cross section $[n_T]$.

If using divider systems with height separation (TS1) please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

One-part end connectors - plastic


The plastic end connectors can be connected from above or from below. The connection type can be changed by changing the orientation of the end connector.

Key for abbreviations on page 12

Design guidelines

from page 38

technik@kabelschlepp.de Technical support:

Ы $B_{EF} = B_i + 20$ ä ·Ĥ--

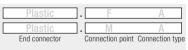
▲ Assembly options

Recommended tightening torque: 0.6 Nm for screws M4

(0 (0 (0 (0 -7, Driver Fixed point

Connection point

F - fixed point M - driver


Connection type

A - threaded joint outside (standard)

I – threaded joint inside

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

online-engineer.de

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: onlineengineer.de

Inner widths

tsubaki-kabelschlepp.com/tkr

TKR0200

Inner widths 40 - 120 mm

Bending radii 55 – 150 mm

Stay variants

Design 030 page 418

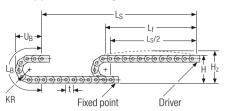
Frame with externally detachable crossbars

- Low-vibration plastic frame with particularly long service
- life thanks to molded chain links.
- Outside: Swivable and detachable
- Inside: detachable

technik@kabelschlepp.de Technical support:

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

TKR0200 | Installation dim. | Unsupported

Unsupported arrangement

KR	Н	H_{z}	L_{B}	U_{B}
[mm]	[mm]	[mm]	[mm]	[mm]
55	192	252	213	96
75	232	292	276	116
95	272	332	339	136
150	382	442	512	191

Inner heights

Inner widths

tsubaki-kabelschlepp.com/tkr

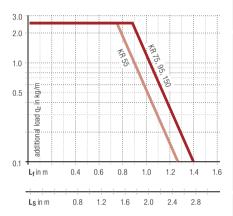
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 0.6 \text{ kg/m}$ at B_i 40 mm. For other inner widths, the maximum additional load changes.

Velocity up to 5 m/s

happy to advise you!


Acceleration up to 200 m/s2*

Additional load

up to 2.5 kg/m

More product information online

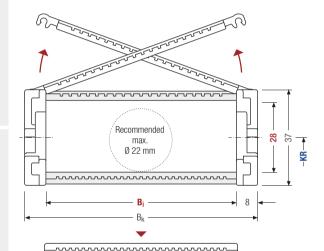
Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here: online-engineer.de

TKR0200.030 | Dimensions · Technical data

Stay variant 030 – with outside opening and detachable crossbars

- Low-vibration plastic frame with particularly long service life thanks to molded chain links.
- Swivable and detachable on one side in any position.
- Outside: Swivable and detachable
- Inside: detachable



Stay arrangement on each chain link (VS: fully-stayed)

B_i 40 - 120 mm

 $\begin{bmatrix} \mathring{\mathcal{U}} \end{bmatrix}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

h i	h _G	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
28	37	40 50 60 80 100 120	B _i + 16	55 75 95 150	0.6 – 1.0

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Divider systems

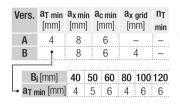
As standard, the divider system is mounted on every 2nd chain link.

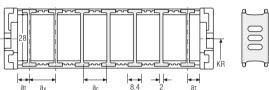
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

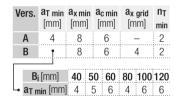
Fixable dividers are available for applications with lateral accelerations and for applications lying on the side.

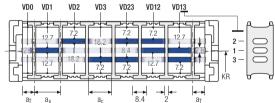
The arresting cams click into place in the locking grids in the crossbars (Version B).

Inner heights



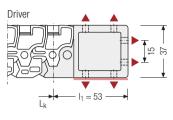

Inner widths

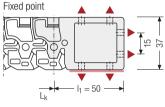

:subaki-kabelschlepp.com/tkr


Divider system TS0 without height separation

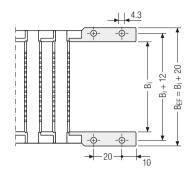
Divider system TS1 with continuous height separation

Order example

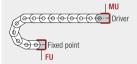

Please state the designation of the divider system (TS0, TS1 ...), version and number of dividers per cross section [n_T].


If using divider systems with height separation (TS1) please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

TKR0200 | End connectors | UMB

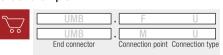

UMB end connectors UMB - plastic

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.



Assembly options

Recommended tightening torque: 0.6 Nm for screws M4


Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/support

Configure your custom cable carrier here: onlineengineer.de

tsubaki-kabelschlepp.com/tkr

TKR0260

Pitch 26 mm

Inner height 40 mm

Inner widths 50 - 200 mm

Bend radii 75 – 150 mm

Stay variants

Design 030 page **424**

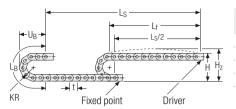
Frame with externally detachable crossbars

- Low-vibration plastic frame with particularly long service life thanks to molded chain links.
- Outside: Swivable and detachable
- Inside: detachable

technik@kabelschlepp.de Technical support:

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

TKR0260 | Installation dim | Unsupported

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
75	248	308	288	130
100	298	358	366	155
125	348	408	445	180
150	398	458	523	205

Inner heights

Inner widths

tsubaki-kabelschlepp.com/tkr

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 1.5 \text{ kg/m}$ at B_i 50 mm. For other inner widths, the maximum additional load changes.

Velocity up to 5 m/s

Travel length

up to 3.9 m

Acceleration up to 200 m/s2* 12.0

10.0 8.0

6.0

4.0

3.0

2.0

Additional load up to 8.0 kg/m

1.0 0.4 L_f in m 1.0 2.0 3.0 L_S in m 2.0 4.0 6.0

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at

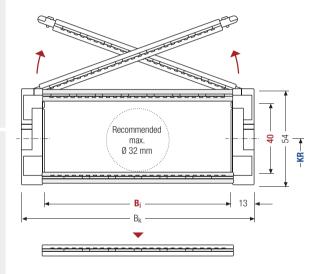
tsubaki-kabelschlepp.com/ support

Configure your custom cable carrier here:

online-engineer.de

^{*} For values > 20 m/s2, please contact us, we are happy to advise you!

- Low-vibration plastic frame with particularly long service life thanks to molded chain links.
- Swivable and detachable on one side in any position.
- Outside: Swivable and detachable
- Inside: detachable


Stay arrangement on each chain link (VS: fully-stayed)

B_i 50 – 200 mm

Design guidelines from page 38

Technical support: technik@kabelschlepp.de

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

engineer.de	onfigurator
online-	Cable Carrier C
סו	

h _i	h _G	B _i	B_k	KR	q_k	
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]	
40	54	50 75 100 125 150 200	B _i + 26	75 100 125 150	1.5 – 2.7	

Order example

TKR0260.030 | Inner distribution | TS0 · TS1 · TS3

Divider systems

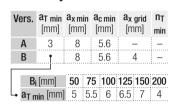
As standard, the divider system is mounted on every 2nd chain link.

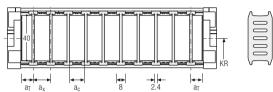
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (Version A).

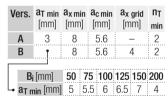
Fixable dividers are available for applications with lateral accelerations and for applications lying on the side.

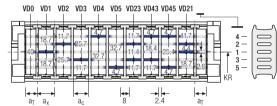
The arresting cams click into place in the locking grids in the crossbars (Version B).

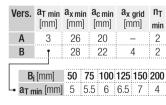
Inner heights



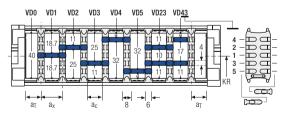

Inner widths


tsubaki-kabelschlepp.com/tkr


Divider system TS0 without height separation



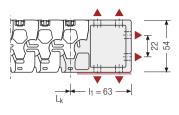
Divider system TS1 with continuous height separation

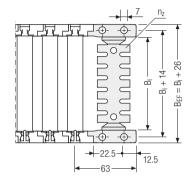


Divider system TS3 with height separation made of aluminum partitions

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.

Aluminum section subdivisions are only available with $a_x > 26 \text{ mm}$.

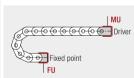

TKR0260 | End connectors | UMB


UMB end connectors UMB - plastic

The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

Key for abbreviations on page 12

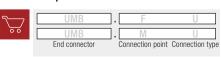
Design guidelines from page 38



▲ Assembly options

B i [mm]	B _{EF} [mm]	n _z
50	76	2 x 3
75	101	2 x 5
100	126	2 x 7
125	151	2 x 9
150	176	2 x 11
200	226	-

Recommended tightening torque: 0.6 Nm for screws M4


Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

online-engineer.de

technik@kabelschlepp.de Technical support:

Subject to change.

Inner widths

50 200 **←**

tsubaki-kabelschlepp.com/tkr

Design guidelines from page 38

TKR0280

Pitch 28 mm

Inner height 52 mm

Inner widths 50 - 200 mm

Bending radii 75 – 200 mm

Stay variants

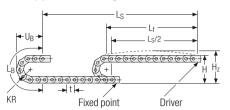
Design 030 page **430**

Frame with externally detachable crossbars

- Low-vibration plastic frame with particularly long service life thanks to molded chain links.
- Outside: Swivable and detachable
- Inside: detachable

technik@kabelschlepp.de

TOTALTRAX® complete systems


Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at traxline.de

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
75	262	322	292	139
100	312	372	370	164
150	412	472	527	214
200	512	572	684	264

Inner heights

Inner widths

tsubaki-kabelschlepp.com/tkr

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.0 \text{ kg/m}$ at B_i 50 mm. For other inner widths, the maximum additional load changes.

Velocity up to 5 m/s

Travel length

up to 4.9 m

Acceleration up to 200 m/s2* 12.0

Additional load up to 10.0 kg/m 10.0 8.0 6.0 4.0 3.0 2.0 q_z in kg/ load 1.0 additional 0.4 L_f in m 1.0 2.0 3.0 L_S in m 2.0 4.0 6.0

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ support

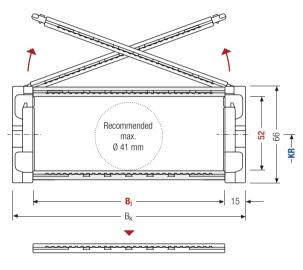
Configure your custom cable carrier here: online-engineer.de

^{*} For values > 20 m/s2, please contact us, we are happy to advise you!

Stay variant 030 - with outside opening and detachable crossbars

- Low-vibration plastic frame with particularly long service life thanks to molded chain links.
- Swivable and detachable on one side in any position.
- Outside: Swivable and detachable
- Inside: detachable

Stay arrangement on each chain link (VS: fully-stayed)



B_i 50 - 200 mm

Design guidelines from page 38

technik@kabelschlepp.de Technical support:

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please

contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t for odd number of chain links

h _i	h _G	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
52	66	50 75 100 125 150 200	B _i + 30	75 100 150 200	2.0 – 3.2

Order example

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

online-engineer.de

TKR0280.030 | Inner distribution | TS0 · TS1 · TS3

Divider systems

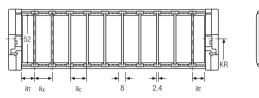
As standard, the divider system is mounted on every 2nd chain link.

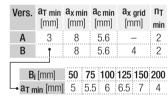
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (version A).

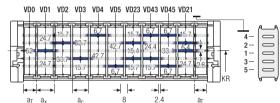
Fixable dividers are available for applications with lateral accelerations and for applications lying on the side.

The arresting cams click into place in the locking grids in the crossbars (version B).

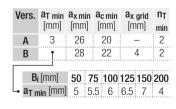
Inner heights

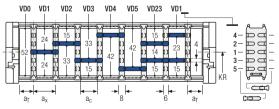

Inner widths


tsubaki-kabelschlepp.com/tkr


Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]		a _{x grid} [mm]	n _T min
Α	3	8	5.6	-	_
В	•	8	5.6	4	_
	[mm] nin [mm]		.	125 150 6.5 7	

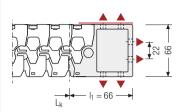


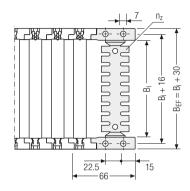

Divider system TS1 with continuous height separation

Divider system TS3 with height separation made of aluminum partitions

The dividers are fixed by the partitions. the complete divider system is movable in the cross section.

Aluminum section subdivisions are only available with $a_x > 26 \text{ mm}$.


Key for abbreviations on page 12


Design guidelines from page 38

TKR0280 | End connectors | UMB

UMB end connectors UMB - plastic

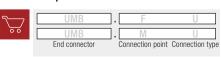
The universal mounting brackets (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

▲ Assembly options

B i [mm]	B _{EF} [mm]	n _z
50	80	2 x 3
75	105	2 x 5
100	130	2 x 7
125	155	2 x 9
150	180	2 x 11
200	230	-

Recommended tightening torque: 0.6 Nm for screws M4

MU (o (o (o (o (o (o - Driver Fixed point FU


Connection point

F - fixed point M - driver

Connection type

U - universal mounting bracket

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

online-engineer.de

technik@kabelschlepp.de

Technical support:

Inner widths

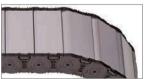
tsubaki-kabelschlepp.com/tkr

TUBES-PLASTIC

Covered solid plastic and hybrid cable carriers

These covered product types ensure optimum protection of the cables and hoses against chips and other dirt. Variable separations within the cable carrier allow reliable and efficient partitioning. Hoses ans cables with larger diameters can also be accommodated and guided.

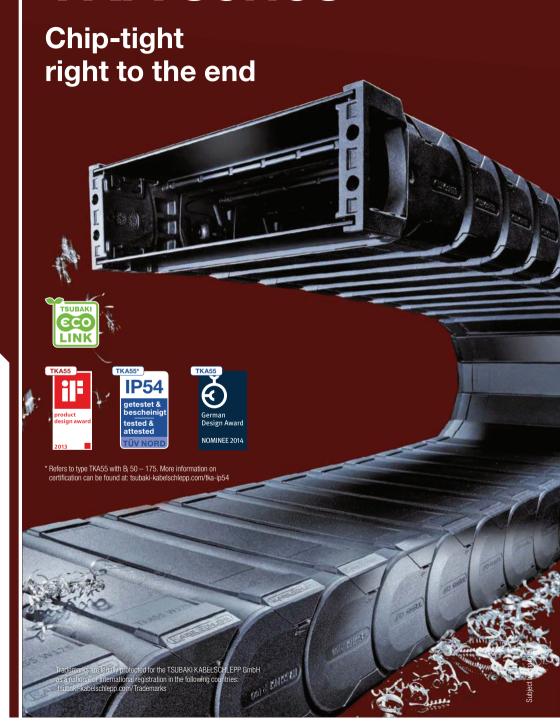
- Covered cable carriers with plastic or aluminum cover systems
- Aluminum cover systems in 1 mm width sections
- To protect cables and hoses against chips or dirt
- Easy and quick to open inside and outside



TKA series Page 436

Chip-tight right to the end

range of accessories



XLT series Page 510

Tubes with variable cable carrier widths

TKA series

Inner heights 20.5 45

Inner widths 15

250

tsubaki-kabelschlepp.com/tka

- 1 End connectors with optional strain relief
- 2 Interior gentle on the cables without projecting edges
- 3 Integrated noise damping
- 4 Dividers and height separations for separating the cables
- 5 Quick and easy opening from any position
- 6 Secure cover attachment even under severe stresses (e.g. from hydraulic lines)
- 7 Chain links made of glass-fiber reinforced plastic
- 8 Bolt/hole connection and stroke system covered completely
- 9 Designs with inward or outward opening crossbars
- 10 Covers completely detachable on one side
- 11 Cover sheet for universal end connectors

Features

- Excellent cable protection in the connector area
- Chip and dirt resistant due to smooth surfaces
- Extensive unsupported length
- High torsional rigidity
- Low noise emission
- Optional: On request, special material with protection against hot chips up to 850 °C
- Numerous custom material types for custom applications available

- Easy-to-open cover with simultaneously high retention force on the chain link during operation
- Measurement scale for easy alignment of the dividers
- TKA55: IP54 tested and certified*

Optimized utilization of the interior space; vertical and horizontal inner distribution possible

Easy-open covers from any position offer secure fastening

Triple-stroke system for extensive unsupported length

Universal end connector with option for integrating strain relief elements

Design guidelines from page 38

technik@kabelschlepp.de Technical support:

<u>e</u>
Ö
96
چ ' ا
Sulfigur
တု ပို
The second
<u>`</u> = °
Sab ja
81

Туре	Opening variant	Stay variant	h _i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	B _{i-} grid [mm]	t [mm]	KR [mm]	Additional load ≤ [kg/m]	d _{max} [mm]	
T// 100	ed0					\longleftrightarrow	X mm		X			
TKA30		060	20.5	28,5	15-65	28-78	-	30.5	55 – 180	3	16	
	亩	080	20.5	28,5	15-65	28 – 78	-	30.5	55 – 180	3	16	
TVA20												
TKA38		060	26	36	25-130	41 – 146	-	38.5	70 – 230	5	20	
	İ	080	26	36	25-130	41 – 146	-	38.5	70 – 230	5	20	
TKA45												
TRA45		060	36	50	50-150	66 – 166	-	45.5	82-230	6	28,5	
	Ö	080	36	50	50-150	66 – 166	-	45.5	82-230	6	28,5	
TKA55												
TRAJO	<u></u>	060	45	64	50-250	70 – 270	-	55.5	100 – 300	15	36	
	Ö	080	45	64	50-250	70 – 270	-	55.5	100 – 300	15	36	
222												

Technical manual

Do you need additional information on the TKA series? Our technical manual at **tsubaki-kabelschlepp.com/download** contains all information for selecting your cable carrier.

TKA series | Overview

Unsuppo	rted arrar	ngement	Glidin	g arrange	ment		Inner dis	tribution			ation va		Page
Travel length ≤ [m]	v _{max} ≤ [m/s]	a max ≤ [m/s²]		v _{max} ≤ [m/s]	a max ≤ [m/s²]	TS0	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	Pa
				(2				H		vertica or	J. J.	arra	
3.5	10	50	80	2.5	25	•	•	-	-	•	•	-	442
3.5	10	50	80	2.5	25	•	•	-	-	•	•	-	443
3.9	10	50	120	2.5	20	•	•	-	-	•	•	-	448
3.9	10	50	120	2.5	20	•	•	-	-	•	•	-	449
										•			······································
4.7	9	45	125	3	20	•	•	-	-	•	•	-	454
4.7	9	45	125	3	20	•	•	-	-	•	•	-	455
6.5	8	40	150	3	15								460
0.0	O	40	150	J	15	•	•			•	•	-	400
6.5	8	40	150	3	15	•	•	-	-	•	•	-	461

Key for abbreviations

TKA30

Pitch 30.5 mm

Inner height 20.5 mm

Inner widths 15 – 65 mm

Bending radii 55 - 180 mm

Stay variants

Design 060 page **442**

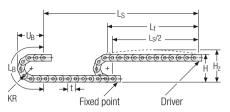
Covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.

Design 080 page **443**

Covered on both sides with outside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.


Optional: protection against chips up to 850 °C

On request, we also produce all TKA types in designs for protection against hot chips. The special material used protects the cables from hot chips up to 850 °C. This practically excludes downtimes due to hot chips that could destroy the cables.

TKA series

TKA30 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
55	139	164	234	100
75	179	204	297	120
95	219	244	359	140
125	279	304	454	170
145	319	344	516	190
180	389	414	626	225

Inner heights

20.5

Inner widths

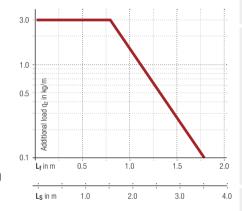
15 65

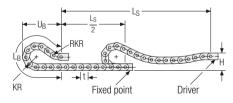
tsubaki-kabelschlepp.com/tka

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 0.67 \text{ kg/m}$ at $B_i 50$ mm. For other inner widths, the maximum additional load changes.


Velocity up to 10 m/s


Acceleration up to 50 m/s2

Gliding arrangement

The gliding cable carrier has to be routed in a channel. See p. 654.

Velocity

up to 2.5 m/s

Acceleration up to 25 m/s2

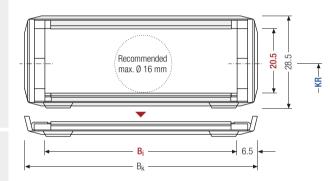
Travel length up to 80 m

Additional load up to 3.0 kg/m

TKA30.060 | Dimensions · Technical data

Stay variant 060 – covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.



Stay arrangement on each chain link (VS: fully-stayed)

B_i 15 – 65 mm

Î

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_{k} rounded to pitch t for odd number of chain links

hi	h_{G}	B _i	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
20.5	28.5	15 20 25 38 50 65	B _i + 13	55 75 95 125 145 180	0.48 - 0.76

Order example

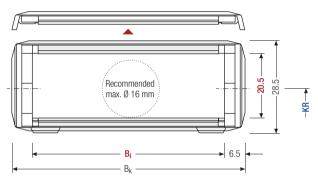
Inner heights

20.5

Inner widths 15 65

tsubaki-kabelschlepp.com/tka

Stay variant 080 - covered on both sides with outside detachable cover


- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.

Stay arrangement on each chain link (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t for odd number of chain links

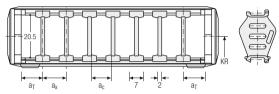
h _i	h _G	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
20.5	28.5	15 20 25 38 50 65	B _i + 13	55 75 95 125 145 180	

Order example

TKA30 | Inner distribution | TS0 · TS1

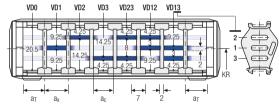
Divider systems

As a standard, the divider system is mounted on every 2^{nd} chain link.


As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

The dividers are easily attached to the stay for applications with transverse accelerations and for applications laying on the side by simply turning them.

The locking cams click into place in the locking grids in the covers (Version B).


Divider system TS0 without height separation

Vers.			a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	3.5	7	5	-	-
В	1	8	6	2	-
B _i [mm]	15 20) 25	38 50	65
a _{T min}	n [mm]	7.5 8	8.5	9 9	8.5

Divider system TS1 with continuous height separation

Vers.	a _{T min} [mm]		a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	3.5	7	5	-	2
В	i	8	6	2	2
				38 50 9 9	

Order example

Please state the designation of the divider system (TS0, TS1 \dots), version and number of dividers per cross section $[n_T]$.

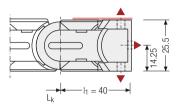
If using divider systems with height separation **(TS1)** please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

Inner

heights

20.5

Inner widths


15

65

tsubaki-kabelschlepp.com/tka

Universal end connectors UMB – plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom, or face on.

4.5 $B_i - 1.5$ ä

▲ Assembly options

Recommended tightening torque: 3 Nm for cheese-head screws ISO 4762 - M4 x 12

The end connectors are also available as an option without cover sheet. Please state when ordering.

Connection point

F - fixed point

M - driver

Connection type

U - universal end connector

Order example

We recommend the use of strain reliefs before driver and fixed point. See from p. 706.

TKA38 | Stay variants | Overview

TKA38

Pitch 38.5 mm

Inner height 26 mm

Inner widths 25 - 130 mm

Bending radii 70 - 230 mm

Stay variants

Design 060 page **448**

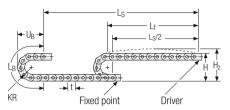
Covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.

Design 080 page **449**

Covered on both sides with outside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.


Optional: protection against chips up to 850 °C

On request, we also produce all TKA types in designs for protection against hot chips. The special material used protects the cables from hot chips up to 850 °C. This practically excludes downtimes due to hot chips that could destroy the cables.

TKA series

TKA38 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
70	176	201	297	127
95	226	251	375	152
120	276	301	454	177
145	326	351	532	202
170	376	401	611	227
195	426	451	689	525
230	496	521	799	287

Inner heights

Inner widths

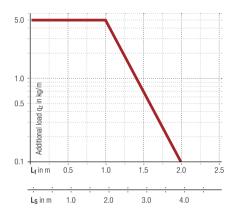
tsubaki-kabelschlepp.com/tka

Load diagram for unsupported length depending on the additional load.

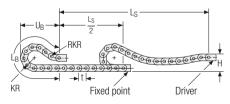
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 1.13$ kg/m at B_i 78 mm. For other inner widths, the maximum additional load changes.

Velocity up to 10 m/s



Acceleration up to 50 m/s2



Additional load up to 5.0 ka/m

Gliding arrangement

The gliding cable carrier has to be routed in a channel. See p. 654.

Velocity

up to 2.5 m/s

Travel length

up to 120 m

Acceleration up to 20 m/s2

Additional load up to 5.0 kg/m

Our technical support can provide help for gliding arrangements:

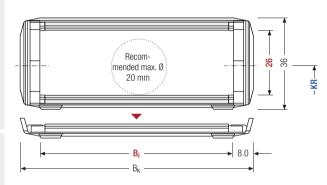
technik@kabelschlepp.de

Design guidelines from page 38

TKA38.060 | Dimensions · Technical data

Stay variant 060 - covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.



Stay arrangement on each chain link (VS: fully-stayed)

B_i 25 - 130 mm

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

> Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length Lk rounded to pitch t for odd number of chain links

technik@kabelschlepp.de

h _i	h _G	B_i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
26	36	25 38 58 78 103 130	B _i + 16	70 95 120 145 170 195 230	0.77 - 1.47

Order example

Inner heights

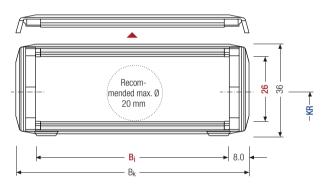
Inner widths 25

130

tsubaki-kabelschlepp.com/tka

TKA38.080 | Dimensions · Technical data

Stay variant 080 - covered on both sides with outside detachable cover


- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.

Stay arrangement on each chain link (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t for odd number of chain links

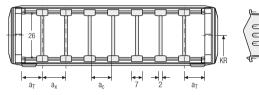
h _i h _G	B _i	B_k	KR	q_k
[mm] [mm]	[mm]	[mm]	[mm]	[kg/m]
26 36	25 38 58 78 103 130	B _i + 16	70 95 120 145 170 195 230	0.77 – 1.47

Order example

TKA38 | Inner distribution | TS0 · TS1

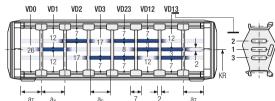
Divider systems

As a standard, the divider system is mounted on every 2^{nd} chain link.

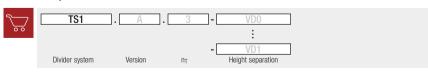

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

The dividers are easily attached to the stay for applications with transverse accelerations and for applications laying on the side by simply turning them.


The locking cams click into place in the locking grids in the covers (Version B).


Divider system TS0 without height separation

Vers.	a _{T min} [mm]		$\begin{array}{c} a_{\text{c min}} \\ [\text{mm}] \end{array}$	a _{x grid} [mm]	n _T min
Α	3.5	7	5	_	_
В	Ť	8	6	2	-
			.	78 103	
• a _{T mir}	n [mm]	8.5 9	9	9 7.5	9



Divider system TS1 with continuous height separation

Order example

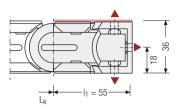
Please state the designation of the divider system (TS0, TS1 \dots), version and number of dividers per cross section $[n_T]$.

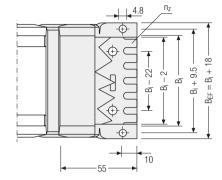
If using divider systems with height separation **(TS1)** please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

Inner

heights

Inner widths

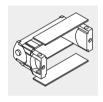

25

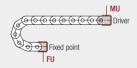

130

tsubaki-kabelschlepp.com/tka

Universal end connectors UMB – plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom, or face on.

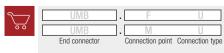



▲ Assembly options

Recommended tightening torque: 3 Nm for cheese-head screws ISO 4762 - M4 x 20

B i [mm]	B _{EF} [mm]	n _z	
25	43	2	
38	56	3	
58	76	5	
78	96	7	
103	121	9	
130	148	13	

The end connectors are also available as an option without cover sheet. Please state when ordering.


Connection point

F – fixed point M - driver

Connection type

U - universal end connector

Order example

TKA45

Key for abbreviations on page 12

Pitch 45.5 mm

Inner height 36 mm

Inner widths 50 - 150 mm

Bending radii 82 - 230 mm

Stay variants

Design 060 page **454**

Covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.

Design 080 page **455**

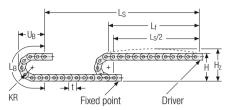
Covered on both sides with outside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.

technik@kabelschlepp.de Technical support:

Design guidelines

online-engineer.de


Optional: protection against chips up to 850 °C

On request, we also produce all TKA types in designs for protection against hot chips. The special material used protects the cables from hot chips up to 850 °C. This practically excludes downtimes due to hot chips that could destroy the cables.

TKA series

TKA45 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR [mm]	H [mm]	H _z [mm]	L _B [mm]	U _B [mm]
82	214	249	348	153
95	240	275	389	166
125	300	335	483	196
145	340	375	546	216
170	390	425	625	241
200	450	485	719	271
230	520	555	814	301

Inner heights

Inner widths

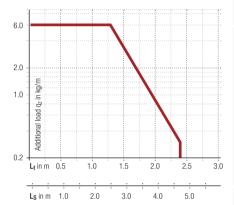
tsubaki-kabelschlepp.com/tka

Load diagram for unsupported length depending on the additional load.

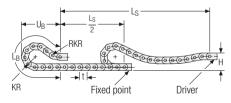
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 2.29 \text{ kg/m}$ at B_i 150 mm. For other inner widths, the maximum additional load changes.

Velocity up to 9 m/s



Acceleration up to 45 m/s2



Additional load up to 6.0 ka/m

Gliding arrangement

The gliding cable carrier has to be routed in a channel. See p. 654.

Velocity up to 3 m/s

Acceleration up to 20 m/s2

Travel length up to 125 m

Additional load up to 6.0 kg/m

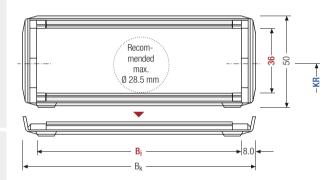
Our technical support can provide help for gliding arrangements:

technik@kabelschlepp.de

TKA45.060 | Dimensions · Technical data

Stay variant 060 – covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.



Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 50 - 150 \text{ mm}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

hį	h_{G}	B _i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
36	50	50 75 100 125 150	B _i + 16	82 95 125 145 170 200 230	1.34 - 2.29

Order example

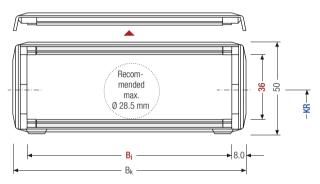
Inner heights

Inner widths 50 150

TKA45.080 | Dimensions · Technical data

Stay variant 080 - covered on both sides with outside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.



Stay arrangement on each chain link (VS: fully-stayed)

 $B_i 50 - 150 \text{ mm}$

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t for odd number of chain links

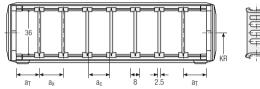
hi	h _G	B _i	B_k	KR	q_k
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
36	50	50 75 100 125 150	B _i + 16	82 95 125 145 170 200 230	1.34 - 2.29

Order example

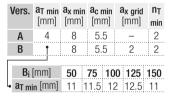
TKA45 | Inner distribution | TS0 · TS1

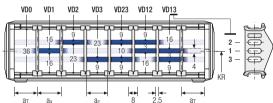
Divider systems

The divider system is mounted on every 2nd chain link as a standard.


As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

The dividers are easily attached to the stay for applications with transverse accelerations and for applications laying on the side by simply turning them.


The locking cams click into place in the locking grids in the covers (Version B).


Divider system TS0 without height separation

Vers.			a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	4	8	5.5	-	-
В	Ť	8	5.5	2	-
Bi	[mm]	50	75 10	0 125	150
a _{T mi}	n [mm]	11 1	1.5 12	2 12.5	11

Divider system TS1 with continuous height separation

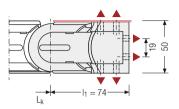
Order example

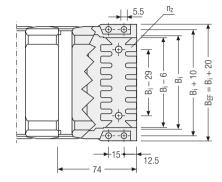
Please state the designation of the divider system (TS0, TS1 \dots), version and number of dividers per cross section $[n_T]$.

If using divider systems with height separation **(TS1)** please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

Inner

heights

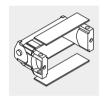

Inner widths

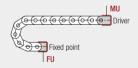

50

TKA45 | End connectors | UMB

Universal end connectors UMB – plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom, or face on.

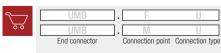



▲ Assembly options

Recommended tightening torque: 5 Nm for cheese-head screws ISO 4762 - M5 x 8.8

B i [mm]	B _{EF} [mm]	n _z
50	70	2 x 3
75	95	2 x 5
100	120	2 x 7
125	145	2 x 9
150	170	2 x 11

The end connectors are also available as an option without cover sheet. Please state when ordering.


Connection point

F – fixed point M - driver

Connection type

U - universal end connector

Order example

TKA55

Pitch 55.5 mm

Inner height 45 mm

Inner widths 50 - 250 mm

Bending radii 100 – 300 mm

Stay variants

Design 060 page **460**

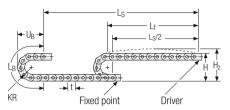
Covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.

Design 080 page **461**

Covered on both sides with outside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.


Optional: protection against chips up to 850 °C

On request, we also produce all TKA types in designs for protection against hot chips. The special material used protects the cables from hot chips up to 850 °C. This practically excludes downtimes due to hot chips that could destroy the cables.

TKA series

TKA55 | Installation dim. | Unsupported · Gliding

Unsupported arrangement

KR	Н	Hz	LB	UB
[mm]	[mm]	[mm]	[mm]	[mm]
100	264	304	425	188
120	304	344	488	208
140	344	384	551	228
170	414	454	645	258
195	454	494	725	283
225	514	554	818	313
250	564	604	896	338
300	664	704	1211	388

Inner heights

Inner widths

tsubaki-kabelschlepp.com/tka

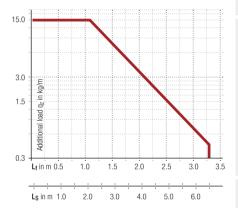
Load diagram for unsupported length depending on the additional load.

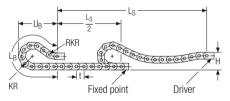
Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 1.95 \text{ kg/m}$ at $B_i 50$ mm. For other inner widths, the maximum additional load changes.

Velocity up to 8 m/s

Travel length


up to 6.5 m


Acceleration up to 40 m/s²

Additional load up to 15.0 kg/m

Gliding arrangement

The gliding cable carrier has to be routed in a channel. See p. 654.

Velocity up to 3.0 m/s

Acceleration up to 15 m/s2

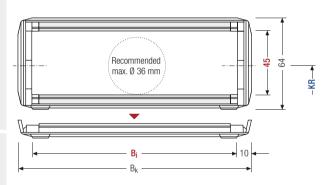
Travel length up to 150 m

Additional load up to 15.0 kg/m

TKA55.060 | Dimensions · Technical data

Stay variant 060 – covered on both sides with inside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Inside: very quick release.



Stay arrangement on each chain link (VS: fully-stayed)

B_i 50 – 250 mm

Ů

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

h i [mm]	h _G [mm]	B _i [mm]	B _k [mm]	KR [mm]	q_k [kg/m]
45	64	50 75 100 125 150	B _i + 21	100 120 140 170	1. <u>9</u> 5
		175 200 225 250	Dj + Z I	195 225 250 300	4.28

Order example

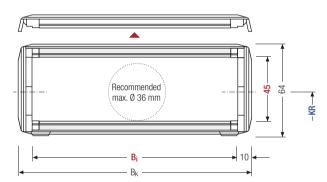
Inner heights

Inner widths 50 250

tsubaki-kabelschlepp.com/tka

Stay variant 080 - covered on both sides with outside detachable cover

- Plastic cover for rough environmental conditions with dirt, chips or spray water.
- Fully detachable on one side in any position.
- Outside: very quick release.



Stay arrangement on each chain link (VS: fully-stayed)

B: 50 - 150 mm

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length Lk rounded to pitch t for odd number of chain links

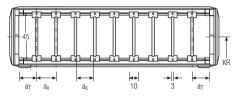
h i [mm]	h _G [mm]	B _i [mm]		B _k [mm]	KR [mm]	q_k [kg/m]
45	64	50 75 100	125 150	B _i + 21	100 120 140 170	1.95
		175 200 225	250		195 225 250 300	4.28

Order example

TKA55 | Inner distribution | TS0 · TS1

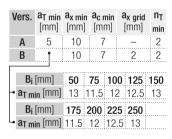
Divider systems

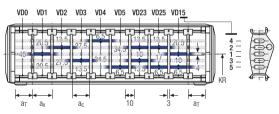
As a standard, the divider system is mounted on every 2nd chain link.


As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (Version A).

The dividers are easily attached to the stay for applications with transverse accelerations and for applications laying on the side by simply turning them.

The locking cams click into place in the locking grids in the covers (Version B).


Divider system TS0 without height separation


Vers.	a _{T min} [mm]		a _{c min} [mm]	a _{x grid} [mm]	n _T
Α	5	10	7	-	_
В	Ť	10	7	2	-
	[mm] in [mm]			0 125 2 12.5	
Bi	[mm]	175 2	200 22	5 250	
a_{T min} [mm] 11.5 12 12.5 13					

100000

Divider system TS1 with continuous height separation

Order example

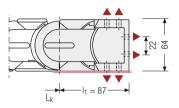
Please state the designation of the divider system (TS0, TS1 \dots), version and number of dividers per cross section $[n_T]$.

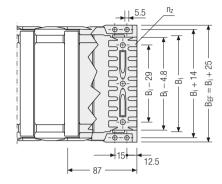
If using divider systems with height separation **(TS1)** please also state the positions [e.g. VD1] viewed from the left driver belt. You are welcome to add a sketch to your order.

Inner

heights

Inner widths

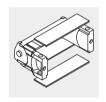

50

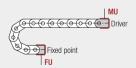

250

tsubaki-kabelschlepp.com/tka

Universal end connectors UMB – plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom, or face on.



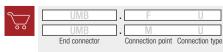

▲ Assembly options

Recommended tightening torque: 5 Nm for cheese-head screws ISO 4762 - M5 x 8.8

B i [mm]	B _{EF} [mm]	n _z
50	74	2 x 3
75	99	2 x 5
100	124	2 x 7
125	149	2 x 9
150	174	2 x 11
175	199	2 x 13
200	224	-
225	249	-
250	274	-

The end connectors are also available as an option without cover sheet. Please state when ordering.

Connection point


F – fixed point

M - driver

Connection type

U - universal end connector

Order example

